
Customised Shortest Paths Using a Distributed Reverse Oracle

Arthur Mahéo,1,* Shizhe Zhao,1 Afzaal Hassan,2
Daniel Harabor,1 Peter J. Stuckey,1 Mark Wallace1

1 Monash University, Faculty of IT, Melbourne, Australia
2 Swinburne University of Technology, Melbourne, Australia

{arthur.maheo,shizhe.zhao,daniel.harabor,peter.stuckey,mark.wallace}@monash.edu
afzaalhassan@swin.edu.au

Abstract

We consider the design and implementation of a cen-
tralised oracle that provides commuters with customised and
congestion-aware driving directions. Computing directions
for a single journey is straightforward, but doing so at city-
scale, in real-time, and under changing conditions is ex-
tremely challenging. In this work we describe a new type of
centralised oracle which combines fast database-driven path
planning with a query management system that distributes
work across a small commodity cluster of networked ma-
chines. Our system allows large-scale changes to the under-
lying graph metric, from one query to the next, and it sup-
ports a variety of query types including optimal, bounded sub-
optimal, time-budgeted and k-prefix. Simulated experiments
show strong results: we can provide real-time routing for all
peak-hour commuter trips in the city of Melbourne, Australia.

Introduction
In commuter road routing a centralised oracle aims to serve
driving directions to as many simultaneous users as possible.
There exists a large number of simultaneous queries, tens or
even hundreds of thousands, and each one must be solved
in close to real-time. The planned routes meanwhile must
have guarantees: optimal or close to optimal. Further com-
plications include real-time data updates, to reflect changing
road conditions, and customised metrics, which means the
objective function can change from one query to the next.

Ours is an extremely challenging problem which has been
considered by all major map providers. Some of these ap-
proaches are proprietary and their implementations are un-
available for scientific experimentation. Such is the case for
Bing Maps and Google Maps. Other providers (e. g., Open-
StreetMap, OpenTraffic) do make available routing imple-
mentations and these are based on modern speedup algo-
rithms including Contraction Hierarchies (CHs) (Geisberger
et al. 2008, 2012) and other similar techniques (Abraham
et al. 2012; Arz, Luxen, and Sanders 2013). Though each
of these works can be orders of magnitude faster than refer-
ence algorithms, such as Dijkstra and A*, their performance
advantages are achieved under the assumption that the input
graph remains static. When the graph changes, for example

*Corresponding author: arthur.maheo@monash.edu
Copyright © 2021, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

because of a new metric or because new traffic-related infor-
mation becomes available, these algorithms no longer guar-
antee returning a shortest or even feasible path. The reason is
that such modern algorithms rely on auxiliary data, created
offline during a preprocessing step. When the graph changes
this data is invalidated and all guarantees are lost.

To handle dynamically changing costs some authors pro-
pose to repair auxiliary data (Schultes and Sanders 2007;
Geisberger et al. 2012) or else to compute metric inde-
pendent auxiliary data and then customise the costs on-
line (Dibbelt, Strasser, and Wagner 2014). After these oper-
ations every query is again guaranteed optimal with respect
to the new costs and/or metric function. This technology is
known to power Bing Maps (Delling et al. 2017) and is be-
lieved to be at the heart of Google Maps (Geisberger 2015).
The problem is that the cost of each update/repair depends
on the size of the changeset. With only a few edges changed
these procedures add only a small overhead per query. When
the changeset grows large (e. g., the metric changes with
each new query) the overhead can dominate runtime, to the
point where it becomes faster to find a shortest path using a
reference algorithm. See Figures 1 and 2 and for an example.
Although improving the customisation time helps (Delling,
Kobitzsch, and Werneck 2014), it does not address the issue.

In this work we consider new perspectives and priorities
for the design of centralised routing oracles, especially in
settings with dynamically changing costs. To wit, instead of
optimal routing and repair, we propose that the following
characteristics are more desirable:

1. Anytime search: centralised oracles should aim for ini-
tial solutions fast and better/optimal solutions eventually.
This allows actionable plans to be computed and returned
sooner, including by a given time budget, as compared to
better or best plans that are returned to the user too late.

2. Prefix paths: centralised oracles should prioritise and re-
turn only the first k steps toward the destination. Prefixes
provide concrete directions commuters can execute and
they can be faster to compute than entire paths. This in-
creases throughput (e. g., the oracle can handle more si-
multaneous queries) and reduces replanning time when
directions are invalidated (e. g., due to missing a turn).

3. No repair: centralised oracles should seldom repair aux-
iliary data. When edge costs change, precomputed data

0 100 10000 651445

customisations (log)

3
10

103

105

Oracle Search: 1715

Dijkstra: 78474

cch-all

cch-1

cch-100
cch-1000

Avg. time per query (µs, log)

Figure 1: We compare Oracle Search and CCH in a sim-
ulated setup of Melbourne (Australia). The metric peri-
odically changes and after every change CCH customises
(i. e., repairs) its auxiliary data. No matter the size of the
changeset (1 edge, 100 edges or even all), CCH performance
quickly degrades as the number of customisations grows:
from one per queryset (651K total) to one per query. Af-
ter 1715 customisations, CCH becomes slower than Oracle
Search and eventually slower than Dijkstra search. This ex-
periment shows the main advantage of CCH: being able to
amortise the cost of customisation over many subsequent
queries.

0 100 10000 651445

customisations (log)

3
10

103

105

Oracle
Search

Dijkstra

cch-all

cch-1

cch-100
cch-1000

Avg. time per query (µs, log)

Figure 2: We compare Oracle Search and CCH in a simu-
lated setup of Melbourne (Australia) where some percent-
age of all queries (651K total) requires a customised met-
ric wi, while all remaining queries are solved by a default
metric w0, such as network distance or freeflow travel time.
CCH performance is identical to Figure 1 but Oracle Search
is substantially faster. This experiment shows the main ad-
vantages of Oracle Search: fast query performance, which
comes from exploiting precomputed w0 paths, and no addi-
tional repair work, which CCH is forced to undertake when
the metric changes.

should instead be exploited to guide online search by
providing strong upper- and lower-bounds on the opti-
mal cost. This allows frequent graph updates and large
changesets without costly online updates.

We describe the design and implementation of such a system
and demonstrate its efficacy using a small cluster of six com-
modity machines. Our approach combines a fast real-time
path planning algorithm, called Oracle Search, with a simple
workload management system that distributes queries across
a cluster. Our system is thus a realtime, centralised routing
engine with a distributed oracle. We differentiate real- and
anytime as, while the underlying search algorithm is indeed
anytime, returning successive paths over the network would
incur too much overhead.

Oracle Search generalises CPD Search (Bono et al. 2019),
a recent and database-driven path planner designed for dy-
namic cost settings. A main feature of CPD Search is that
the A* heuristic function provides incumbent paths as well
as lower bound estimates. In this work we consider a vari-
ety of new database types which can substantially improve
performance and also dramatically reduce the resident set
size – i. e., the amount of data loaded into RAM to solve any
given query. For evaluation, we consider a simulated traffic
scenario of Melbourne, Australia. Results show that we can
process hundreds of thousands of queries per second in driv-
ing conditions similar to Melbourne’s morning-hour peak.

Problem Statement
We consider path planning problems in graphs with dy-
namically changing edge costs. We take as input a graph
G = (V,E) where E ⊆ V × V and where each edge

(i, j) ∈ E has an associated and positive cost w(i, j). The
set of all edge costs, w, is called the graph metric. In ad-
dition to the graph and the metric we are also given pairs
of vertices (s, t) ∈ V (respectively the start and target).
Each pair is called an instance and a valid solution to an in-
stance is any path π from s to t, that is a sequence of edges
[(s, n1), (n1, n2), . . . , (nm, t)]. The cost of the path π is the
sum of weights of its constituent edges denoted w(π). Our
objective is to find a path from s to t which minimises total
edge cost. Let sp(s, t) represent this shortest path. We use
++ to represent path concatenation.

We assume such problems can be solved in two phases:
online and offline. During the offline phase the graph is fixed
with given weights w0 and instances are unknown. We as-
sume that we are free to preprocess the graph for as long as
necessary in order to create additional auxiliary data struc-
tures. During the online phase we are given sets of instances
together with revised weights which must be solved together
as quickly as possible. In other words we aim to maximise
throughput (queries per second) for the set of instances. We
assume auxiliary data is available at this point and that we
are free to exploit it. Our suggested approach, Oracle Search,
has access to an auxiliary database with perfect information
w. r. t. w0 but needs to perform search to find optimal paths
w. r. t. new weights.

Cost updates. Edge costs can change from one query to
the next. These changes model exogenous events, such as
changing traffic conditions, or they can represent penalties,
added on a per query basis in order to derive individualised
plans – e. g., safest routes, simplest routes, scenic routes and
so on. We use w(i, j) to indicate the cost of edge (i, j) with

respect to the current metric and w0(i, j) to indicate the cost
with respect to the initial or preprocessing-time metric. We
allow edge costs to increase or decrease with each update
but we assume the updated value is always at least as large
its corresponding initial cost – i. e., for any edge (i, j) ∈ E
we have that w0(i, j) ≤ w(i, j). We base our oracle on the
free-flow cost, which is the fastest travel time possible on a
road segment – subject to respecting the law.

Note that our problem is distinct from Personalised Rout-
ing (Funke and Storandt 2015) where the authors assume a
fixed set of metrics (i. e., each edge has a vector of static
costs) and where each query is personalised with respect to
a linearised set of user-specified weights (one per metric).

Oracle Search
We describe a family of anytime search algorithms intended
for path planning in settings with dynamically changing
costs. Collectively known as Oracle Search, each member of
this family has access to an eponymous path oracle O(s, t).
Definition 1. A path oracle is a function O(s, t) that returns
a tuple 〈π, lb, ub〉 where π is an s-t path and the values ub =
w(π) and lb = w0(π) are upper and lower bounds on the
cost of the shortest s-t path w(sp(s, t)).

Once constructed, a path oracle can provide strong heuris-
tic estimates in the context of anytime A* search. Two im-
portant differences that distinguish our approach, and which
provide compelling advantages, are the following:

1. For each expanded node the heuristic returns a concrete
path π from s to t. The cost w0(π) bounds the optimal
solution from below and drives the search toward the tar-
get. The cost w(π) meanwhile bounds the optimal solu-
tion from above; allowing more nodes to be pruned and
helping the search to close the optimality gap faster (re-
call that A* only bounds from below).

2. Early termination, which means the search stops when a
quality threshold is achieved or a time limit is exceeded.
In many cases these conditions can be satisfied long be-
fore the target comes off the OPEN list. Upon termination
Oracle Search returns the best known feasible path. We
give a pseudo-code description in Algorithm 1.
There are many possible instantiations of Oracle Search,

each one characterised by the choice of path oracle. For ex-
ample in CPD Search (Bono et al. 2019) the path oracle
takes the form of a Compressed Path Database (CPD, Botea
2011; Botea and Harabor 2013). In this work we generalise
CPD Search and we consider several alternative path ora-
cles which can improve performance and reduce the size of
active memory during pathfinding search.

Oracles. The usual approach to constructing an oracle is
to undertake (offline) an all pairs shortest path computation
w. r. t. the initial graph metric w0. For each vertex s and t
we record in a first-move table, fm[s, t], the identity of the
next edge on the optimal path, from s toward t. Once the
table is computed we extract any w0-shortest path using the
following recursive procedure: extract the move fm[s, t] and
follow the corresponding arc; repeating as necessary until
the target is reached.

Algorithm 1: Oracle-Search(w, s, t, ε): Parame-
ters s and t indicate the start and target, w encodes
actual edge-costs. O is the shortest path oracle. The
fst function returns the first argument of a tuple. This
algorithm guarantees solutions are ε-optimal.

1 closed← ∅; open← {s}
2 for n ∈ N do g[n]←∞;
3 g[s]← 0; f [s]← 0; p[s]← []
4 u←∞; I ← s
5 while open 6= ∅ do
6 n← argmin{f [n′] | n′ ∈ open}
7 if n = t then return p[n] ;
8 if εf [n] ≥ u then return p[I] ++fst O(I, t) ;
9 open← open− {n}

10 closed← closed ∪ {n}
11 for (n,m) ∈ E,m 6∈ closed do
12 if g[n] + w(n,m) < g[m] then
13 p[m]← p[n] ++ [(n,m)]
14 g[m]← g[n] + w(n,m)
15 〈π, lb, ub〉 ← O(m, t)
16 f [m]← g[m] + lb
17 if u > g[m] + ub then
18 u← g[m] + ub; I ← m

19 open← open ∪ {m}

20 return ⊥ I No solution

A first-move table stores |V |2 entries and as |V | grows the
total space consumption can become prohibitive. This situ-
ation has motivated a variety of works that try to reduce the
size of the table using lossless compression, with the cur-
rently most successful strategy being some variety of run-
length encoding (Strasser, Botea, and Harabor 2015). The
resulting Compressed Path Database (CPD) trades a small
amount of online performance1 for a two or even three or-
ders reduction in space.

Reverse oracles. A reverse oracle is a first-move table in-
dexed on a target node t – i. e., for every node t we store
an array that contains the optimal first move for every s to-
wards t. This way of indexing has the same precomputation
costs as in the forward case but comes with some compelling
advantages. For example, in a forward oracle (e. g., CPD)
each first move is extracted from a different row and the set
of required rows is a priori unknown (i. e., the entire CPD
must be loaded into RAM). With a reverse oracle however
we query only a single row to extract a complete s to t path.

Forward CPDs encode one-to-all information, where
many adjacent target nodes share the same first move from
a common source. This compresses very efficiently. Reverse
CPDs meanwhile encode all-to-one information, and here
first moves can differ even for adjacent source nodes (due
to topological changes in the graph). A main consequence is
that a reverse CPD can be many times larger than an equiv-
alent forward CPD. We refer the interested reader to Zhao
et al. (2020) for a more detailed discussion.

1Extraction takes log-time w. r. t. the compressed string length.

Speedup (vs. Dijkstra)

Type Size (MB) Static (w0) Dynamic (w)

Dijkstra 0 1 1
CPD Fwd 118 182.312 42.877

Rev2 49938 n/a n/a
Table Fwd 13423 586.015 62.917

Rev 13423 812.236 73.941
(Trim 3800)

Table 1: Oracle Search performance with different path or-
acles on the benchmark from Figure 1. Speedup is the mean
increase in query processing time. Column Static indicates
free-flow travel times (metricw0) and Dynamic indicates the
congestion costs (w). In the static case the path oracle is suf-
ficient to solve each problem optimally; in the dynamic case
we perform search.

In this work we omit the compression step entirely and
propose a new type of reverse oracle that operates directly
on first-move tables. As we will see, this seemingly naı̈ve
approach actually has several strong advantages:

1. Hardware caching: we need only one row per query and
we can store that row in a low level cache on the proces-
sor. This can eliminate expensive memory read operations
which otherwise occur after every cache miss.

2. Software caching: if two queries share the same target
and metric their w-optimal paths can overlap. By caching
extracted path data in these cases we can further im-
prove oracle performance. This is similar to the “heuris-
tic cache” optimisation developed for forward CPDs
in (Bono et al. 2019).

3. Memory requirements: each row is independent from
all the rest, which means we can load arbitrary subsets of
the first-move table into memory, and we can store those
subsets across different machines. This allows us to triv-
ially parallelise the queryset computation and it also mit-
igates the increased storage cost (since there is no com-
pression).

Choosing an Oracle
Choosing a graph oracle is a case of balancing memory re-
quirements with performance. To recap: forward oracles al-
low first-move data to be effectively compressed but this
comes at the cost of online performance. Meanwhile reverse
oracles suffer from ineffective compression but improved
performance, as only one row is required to extract a com-
plete path and computing each first move requires only con-
stant time. Table 1 gives a summary, comparing tradeoffs for
different instantiations of optimal Oracle Search.

The experiment shows reverse oracles can be several
times faster than forward oracles. Notice too reverse tables
are more storage efficient than reverse CPDs. This is be-
cause compressing reverse data with run-length encoding is

2We omit a full Reverse CPD comparison due to size; tests on
smaller instances indicate performance on par with Fwd Table.

Figure 3: Schematic view of our cluster

inefficient. In our implementation the reverse table stores 4
bits of information per move while our reverse CPD stores
32 bits per run (4 bits for the move and 28 bits for the in-
dex). Although there is some evidence of compression (the
reverse CPD is not seven times larger; only 2.72 times) the
savings are overwhelmed by the index size. The last row,
Trim, shows the actual/active space requirements for the re-
verse oracle – i. e., the total storage for all reverse rows ac-
cessed during search. This indicates that not all nodes appear
as targets in the queryset. If we knew these nodes in advance
we could have only computed and stored their correspond-
ing rows. This reinforces one of the the main advantages of
reverse oracles: that the data can be trivially partitioned and,
potentially, computed only in part.

Distributed Oracle Search
We deploy Oracle Search on a six-machine cluster managed
with a simple script that distributes queries using standard
GNU utilities. We use the following nomenclature:

Driver means the head node of the cluster. We read and
distribute queries from this machine.

Worker means a machine in the cluster that is not the
driver. On each worker node, we will load a resident pro-
cess (the solver) with which we will communicate using
a FIFO: a kernel-level file descriptor which allows for
inter-process communication.

Partition means a division of a larger set of queries, all of
which must be solved. The driver defines the partitions
and subsequently allocates each one to a worker.

Our entire distributed approach works as follows. During the
offline phase, we compute the reverse oracle. This involves a
complete Dijkstra search for every node in the graph which
records the first move in the (reverse) path towards the tar-
get. The rows are distributed across the different machines.
(Notice that this limits each worker to solving only queries
for its associated target nodes). We also load the underlying
graph on each worker. During the online phase, we distribute
path planning queries to the workers, including edge-cost
changes, and we solve them in parallel, with one instance of
Oracle Search for each available core. Finally, we collect a
summary of results from each distributed computation.

Currently our system is a prototype which we use for
feasibility testing. That means we use batched sets of pre-

generated queries instead of reading them in real-time from a
stream. We also do not simulate real-time edge-cost changes
but assume that cost updates from the changeset have al-
ready been applied to the graph, before receiving an associ-
ated query. We follow the same strategy in Figures 1 and 2
when comparing with CCH – i. e., we suppose the graph la-
bels have already been updated and we measure only the
time needed to customise auxiliary data.

Systems such as ours often come with a set of trade-offs,
mainly due to the overhead incurred from distributing jobs
across the (local) network (McSherry, Isard, and Murray
2015). In the experimental section we consider ways to re-
duce such overheads when most of the computational load
comes from external functions (in our case, external calls to
Oracle Search). Our main experiment draws on simulated
congestion data for the city of Melbourne, Australia. We
use congestion as an example of a “changing metric.” When
evaluating the efficacy of the system we consider throughput
(as measured in queries per second) and solution quality (as
measured by path cost w. r. t. the current graph metric w).

Simulating Melbourne
We use a road graph of Melbourne, Australia provided
by OpenStreetMaps (OSM, OpenStreetMap contributors
2017). The graph has 167,758 nodes and 459,793 edges. We
compute free-flow travel time for every edge by taking the
edge length and dividing by max speed.

Our demand is computed from 785 unique origin-
destination pairs provided by the 2012–2016 Victorian In-
tegrated Survey of Travel and Activity (VISTA, Department
of Transport, Victoria 2016). Every VISTA origin or des-
tination represents a unique statistical area for census data
collection purposes. We use the data as follows:

1. Compute scenarios. For each VISTA origin-destination
pair, the survey reports an associated number of trips oc-
curring during different periods of the day. The total num-
ber of commuter trips in the VISTA data is 651,445. We
take these trips as the total set of queries to be solved. The
VISTA data aggregates queries by centroids, which map
to statistical areas in Melbourne. From the centroids, we
generate concrete start and target locations within those
areas and use these as the queryset.

2. Model congestion. We create a 8–9am model of Mel-
bourne, the busiest time during a typical day. VISTA re-
ports 77K sampled trips in that time period but the 2016
Australian Census (Australian Bureau of Statistics 2016)
reports 1.2M commuter trips per day by car. Assuming ap-
proximately half of all trips occur in the morning, we scale
the 8–9am VISTA data by a factor of 8 to obtain 616K
peak-hour trips. We then simulate these trips on the graph
of Melbourne using the software package Aimsun (Aim-
sun 2019). The result is a perturbed graph with increased
edge costs which we treat as a congestion model.

To compute the congestion model we undertake a meso-
scopic simulation of Melbourne. In a mesoscopic simula-
tion every vehicle is considered a separate entity, but their
behaviour is simplified – e. g., vehicles are either stopped or

travelling at speed; there is no acceleration, but turn costs
are taken into account. To model route choice (i. e., how ve-
hicles react to traffic) we used a dynamic user equilibrium
with the method of successive averages (Florian, Mahut, and
Tremblay 2008), as implemented in Aimsun. Vehicles were
released in a uniform fashion for four routing cycles and re-
action time was set at 1.2 s, mimicking human drivers.

The simulation was warmed up using 5 minutes of the
same demand and then ran for a further 60 minutes. This
produces modified travel times on about 12% of all edges –
i. e., a likely optimistic but still plausible model for 8–9am
congestion in Melbourne. Indeed, this relatively small per-
turbation actually impacts 89% of queries (580K).3

Experimental Setup
We implement Oracle Search4in C++ using G++ 7.4 with
-O3 on Ubuntu 18.04. Our test environment is a dedi-
cated hardware cluster comprising six Intel NUCs (model
NUC817BEH). These are commodity system-on-a-chip
hardware, each featuring a four-core i7-8559U CPU running
at 2.7GHz. We install 2 × 16GB RAM per machine and an
NVMe solid state drive for storage. The machines have ac-
cess to most of these resources but 2GB RAM is reserved
for the operating system. The cluster is interconnected with
an off-the-shelf gigabit router.

On each worker, we spin a thread which loads into mem-
ory the path oracle data, the graph and (for simplicity) any
perturbed costs. The worker then opens a FIFO and waits for
configuration data and for the start signal which begins the
solving phase.

On the driver, we load the queryset and divide the in-
stances into partitions – one per worker for simplicity. Each
partition is copied to a shared network drive (NFS) and then
the driver sends a signal to the workers along with configu-
ration data.

The configuration data sets the parameters for the search
(e. g., termination criteria) and the location of the queryset.
Upon receiving the start signal each worker reads the query-
set, performs the search and returns summary statistics per
instance – e. g., solution cost, time elapsed, nodes expanded,
etc.

Small querysets. The performance of a distributed sys-
tem can be strongly impacted by communication overheads.
For example, the time spent copying query data to the work-
ers must be carefully weighed against the expected time sav-
ings that can be derived from parallelisation. To mitigate
such issues we apply a simple rule: for querysets with< 10K
instances5 we perform the search on the driver. This means
we also run a resident process on the driver. This config-
uration still involves copying data but only locally and the
overheads are much smaller than over the network.

3Measured as #queries which require some amount of search.
4We use warthog as pathfinding library (https://bitbucket.org/

dharabor/pathfinding, tag: socs21) and have uploaded the sup-
plementary code and data for the experiments at: https://doi.org/
10.5281/zenodo.4785122

5This value was found experimentally.

Results
To measure the performance of our distributed system we
consider queries per second (i. e., throughput), which we
measure in two different ways.

On the workers: we measure the time taken to read the
queries, the time spent doing search, and the time to out-
put the aggregated statistics. We will report one boxplot
per configuration where each datapoint is the throughput
on a single worker. An ideal system with no overheads
would thus have a throughput five times higher on our
cluster.

On the driver: we measure the time elapsed between send-
ing out queries to workers and collecting all results; this
includes the communication overheads.

In distinct experiments we then consider a variety of dif-
ferent settings including unbounded suboptimal search,
bounded suboptimal search and time-budgeted search. In a
fourth experiment we examine the scalability of our system
and the impact of communication overheads on throughput.

Experiment #1: Any Route At All
In this experiment every query is solved by returning the
shortest free-flow path. Solving such queries requires no
search, only recursive move extractions from the oracle.
Each path isw0-optimal but its cost w. r. t. tow is unbounded
suboptimal. We consider full path extraction and k-prefix
queries where we only extract and return the first k moves
of the w0-optimal path. Results in Figure 4 are per worker.

We see that our system scales extremely well for any value
of k including up to 720K full path queries per second on
average – i. e., enough to provide simultaneous directions
to every commuter in our demand model at every second
(communication overheads notwithstanding).

In Figure 5 we measure the relative cost increase from
returning w0-optimal paths instead of w-optimal paths. The
average difference between the two metrics is approximately
7.2%, with a standard deviation of 26%. Notice that 33%
of paths are not affected by congestion while 1% of queries
have double thew-optimal cost on average. In the worst case
we report a 20x increase in travel time.

Experiment #2: Bounded Suboptimal Search
When computing driving directions we may not need to re-
turn the optimal path. Indeed, driving is inherently chaotic,
with many stops and small unexpected delays. In these cases
we can aim for faster throughput by running a bounded sub-
optimal search. In this setup we terminate Oracle Search as
soon as the gap between the best feasible incumbent and the
best lower-bound (as represented by the f -value of the cur-
rent node) satisfies some criteria. Figure 6 shows per worker
results for a range of multiplicative-factor-guarantees.

We see that when paths with larger suboptimality are ac-
ceptable the search terminates sooner and results in higher
throughput: from 35K queries per second for optimal solu-
tions to 212K queries per second for solutions up to 30%
bounded suboptimal. In Figure 7 we report the percentage
difference in solution cost between the optimal path and the

path returned by suboptimal search. Results are presented
as percentiles, with one plot representing one suboptimal-
ity guarantee. For example, when the cut-off is set at 10%,
around 91% of paths returned are within 5% of the optimum.

Experiment #3: Budgeted Search

Another way to tackle search is to use a fixed budget, such as
for time. In this setup we terminate Oracle Search after the
maximum allowable time period has elapsed. This is useful
in cases where we want to provide a response-time guarantee
– e. g., “we will provide a route in under 1 s.” This works
because ours is a realtime system where we do not have to
complete a search to return a solution. Figure 8 shows per
worker results using different time cut-offs.

We see that the lower the cut-off the higher the through-
put. Moreover, as shown in Figure 9, allowing more time
produces solutions of higher quality. Indeed, when running
the search for 1000 µs, we achieve performance almost equal
to a full search. Notice how the change in throughput is
not a direct function of the time limit. For example, mov-
ing from 30 µs to 300 µs does not yield a tenfold decrease in
throughput. This is because not all queries exhaust their bud-
get: for some queries with little or no congestion the optimal
response response can be returned in less than 10 µs. Only
a very small number of queries receive a timeout. Perhaps
the best example is for 300 µs, where less than 0.00004% of
queries have no solution but throughput (vs. optimal search)
increases almost 50%.

Experiment #4: COST

The COST of a distributed system is defined in McSherry,
Isard, and Murray (2015) as the Configuration that Outper-
forms a Single Thread. This metric measures the impact
on performance from unavoidable overheads which systems
such as ours introduce to distribute work and collect results.
The COST of a system therefore is measured as the num-
ber of cores (or machines) required to outperform a single-
threaded solver that tackles the same workload. In our case
we measure speedup as compared to a single-threaded im-
plementation. Figure 11 shows the COST of the system for
different workloads and number of cores. For workloads
smaller than 10K queries, the system does not distribute
queries to workers but does all routing on the driver.

When the workload is very small – e. g., 100 queries – we
do not manage to scale up, the communication costs6 being
larger than simply running the queries. With 1K queries, we
can see that the performance does not increased with more
than 2 cores. The curve looks identical on both sides because
there is no distribution yet. Once we exceed 10K queries,
our system is able to perform better than the single threaded
configuration. After that, we are at least as fast (speedup =
0.98) as the single threaded implementation with a single
core. The COST of our system is thus 2, the number of cores
needed to outperform the single threaded implementation.

6The working thread still needs to read the queryset.

1 10 50 100 500 All

Path prefix length

104

106

15838K

4962K

1489K 1008K 724K 720K = x̄

Queries / s (log) on workers (mean red cross)

Figure 4: Throughput per worker when computing k-length
prefixes. We do not perform search, we only extract the k
first move using the CPD. The numbers below, in black, rep-
resent the mean throughput recorded across partitions.

40 60 80 100

Percentile

0%

20%

40%

60%

80%

100%

0.13 1.02 6.33

1912.03
Relative suboptimality (%)

Figure 5: We measure the quality of the unbounded subopti-
mal path found by blindly following the oracle vs. optimal.
We plot the mean suboptimality for each percentile, and, for
every tick mark, the maximum in black.

1.0 1.01 1.05 1.1 1.2 1.3

Search bound

104

106

35K 48K
83K 112K 165K 212K = x̄

Queries / s (log) on workers (mean red cross)

Figure 6: Throughput per worker when running a bounded
suboptimal search with different quality guarantees – 1.0
means an optimal search. The numbers above, in black, rep-
resent the mean throughput recorded across partitions.

40 50 60 70 80 90 100

Percentile

0%

5%

10%

15%

20%

25%

Relative suboptimality (%)

Search bound
1.01

1.05

1.10

1.20

1.30

Figure 7: Percentage difference between the optimal path
and suboptimal paths found for different admissibility per-
centage (% sub-optimal).

30 300 1000 None

Time limit (µs)

104

106 151K
49K 38K 35K = x̄

(1.20%)
(<.01%) (<.01%) = % DNF

Queries / s (log) on workers (mean red cross)

Figure 8: Throughput per worker when running a time-
bounded search for different time budgets. The numbers
above, in black, represent the mean throughput recorded
across partitions.

70 80 90 100

Percentile

0%

10%

20%

30%

40%

Relative suboptimality (%)

Time limit (µs)
1000

300

30

Figure 9: Percentage difference between the optimal path
and suboptimal paths found for different time limits (µs).

Discussion
Our experimental results show that we scale well in a variety
of scenarios. However most results are on the workers and
with full queryset (651K). This is an ideal setup where we do

not have to worry about communication overheads. The gap
between the ideal throughout and the achieved throughput
on the driver is shown in Figure 10.

Notice that as the suboptimality tolerance increases the

1.0 1.01 1.05 1.1 1.2 1.3

Search bound

104

106

125K 162K 255K 324K 456K 552K = x̄
178K 244K

419K 563K 826K 1064K=Ideal x̄

Queries / s (log) on the driver (mean red cross)

Figure 10: Throughput measured on the driver. The blue
marks and numbers represent throughput on an ideal system
– one with no communication overheads.

1 2 3 5 10 15 20

cores

0.1

1

10

20

S
p

ee
d

u
p

fa
ct

or

Multiple
machines

100

1000

10000

100000

651445Workload

Figure 11: Speedup of our system vs. single-threaded search
for different workloads. We measure on the driver, from
sending out the queries to receiving the response from all
workers.

gap between our system and the ideal widens. This is be-
cause the ideal setup only considers the time spent doing
search in parallel whereas in practice one incurs a number
of unavoidable overheads, from network latency to read-
ing queries. When the workload is small (or easy) the over-
heads can dominate total time, resulting in workers becom-
ing starved. Figure 11 shows that when there is sufficient
work to distribute our system is up to 14 times faster than
an equivalent single thread implementation. This means a
speedup of 2.8 for each (4-core) machine in the system.
Workload balancing. In the experiments, we use a naı̈ve
allocation for the workers: we allocate an equal number of
rows of the oracle to each. This leads to workers sometimes
getting starved because the queries are not distributed evenly
across the nodes. Because we know the queryset a priori,
we can ensure similar workloads across workers. Doing this
results in a 10% throughput gain, on the workers and on the
driver. This is due to a smaller makespan – i. e., the system
waits less for the slowest worker to finish.

Leveraging caches. We consider two optimisations that can
improve cache behaviour. First, we sort the queries by tar-
get. After solving the first query, all subsequent queries with
the same target will share the heuristic cache. When the w0

paths overlap, the next query can be solved faster. We also
allocate targets to specific threads. In this case queries can
not only share a heuristic (software) cache but also the CPU
can have first-move data already loaded in (hardware) cache.

When sorting the queryset beforehand and running the
same experiments, we measured a throughput increase on
the workers of 50% (52K query / s) when sorting and 60%
(59K query / s) when adding thread allocation. This trans-
lated to an increase of 25% (153K query / s) on the driver
when sorting and 62% (201K query / s) when adding thread
allocation. Again, the significant increase when measuring
on the driver is due to a reduced makespan on the workers.

Revisiting CCH
In Figures 1 and 2 we compared Customizable Contraction
Hierarchies (CCH, Dibbelt, Strasser, and Wagner 2014) with
Oracle Search and Dijkstra search to highlight the poten-
tial drawbacks of customising auxiliary data online. We now
give a more detailed discussion of these experiments.

Our CCH implementation is from RoutingKit,7 a freely
available C++ library with overlapping authors to CCH. We
used same graph and queryset as in our main experiment
with free-flow travel time being the initial metric (w0).

We experimented with a variety of changesets, from one
modification per update (CCH-1) to every modified edge in
the congested graph (CCH-all). In each case we pick as the
changeset the top n perturbed edges from the congestion
model where edges are ordered by the frequency with which
they appear on a shortest path in the queryset. We notice that
the cost of customising CCH data, even for a comparatively
small (100 edges) changeset, is almost as expensive as mod-
ifying all graph edges, even when the repair is performed in
parallel.8 Figure 1 shows that for a modest number of cus-
tomisations (< 1715 per queryset) CCH can be faster than
Oracle Search, on average. As more customised queries are
added, it becomes advantageous to switch. Eventually even
Dijkstra search is faster than CCH, on average.

The largest speedups for Oracle Search (approximately
6x) are in the zero updates case – i. e., for queries where
w0 is the graph metric. In this setting all problems can be
optimally solved using only the path oracle. Figure 2 shows
an experiment where some proportion of queries are solved
with w0 and all the rest have a customised metric w. Here
we find that Oracle Search is always faster, on average.

Our analysis shows that CCH improves on Oracle Search
in one setting only: when the cost of customisation can be
amortised over a large number of subsequent queries. When
the metric changes often, such as per query, CCH perfor-
mance drops quickly and no-repair methods are better.

7https://github.com/RoutingKit/RoutingKit (commit:
613b725)

8The RoutingKit implementation we use supports parallel cus-
tomisation only for the all-graph-edges setting.

Conclusion
In this paper, we consider new ideas for the design of cen-
tralised routing oracles that provide customised driving di-
rections. We propose a family of anytime algorithms, called
Oracle Search, which can identify feasible routes quickly
and optimal routes eventually. We combine Oracle Search
with a distributed workload management system and exper-
iment with a congestion model for the city of Melbourne,
Australia. Using a small commodity cluster we show that
our approach scales to hundreds of thousands of simultane-
ous queries per second and more. We achieve these results in
a range of settings including optimal, bounded-suboptimal
and time-budgeted search. We further show compelling per-
formance advantages vs. CCH (Dibbelt, Strasser, and Wag-
ner 2014), a leading method from the recent literature.

As future work one may consider heuristics to determine
a good/performant division of available work to worker ma-
chines. Also for dynamically adjusting search parameters
during a budgeted/bounded setting. Another promising di-
rection involves computing several different oracles, each
with a different w0 metric. This may improve performance
in cases where the customised w metrics have different cost
floors (cf. the current assumption which assumes w0 is al-
ways freeflow travel-time).

Acknowledgements
Research at Monash University is funded by the Aus-
tralian Research Council under grants DP190100013,
DP200100025 and by a gift from Amazon.

References
Abraham, I.; Delling, D.; Goldberg, A. V.; and Werneck, R.
F. F. 2012. Hierarchical Hub Labelings for Shortest Paths. In
Algorithms - ESA 2012 - 20th Annual European Symposium,
Ljubljana, Slovenia, September 10-12, 2012. Proceedings,
24–35. doi:10.1007/978-3-642-33090-2 4.
Aimsun. 2019. Aimsun Next 8.4 User’s Manual. qthelp:
//aimsun.com.aimsun.8.4/doc/UsersManual/Intro.html. Ac-
cessed on: 2020-02-15.
Arz, J.; Luxen, D.; and Sanders, P. 2013. Transit Node Rout-
ing Reconsidered. In SEA, 55–66.
Australian Bureau of Statistics. 2016. 2016 Cen-
sus QuickStats. https://quickstats.censusdata.abs.gov.
au/census services/getproduct/census/2016/quickstat/
2GMEL?opendocument. Accessed: 2021-02-15.
Bono, M.; Gerevini, A. E.; Harabor, D. D.; and Stuckey, P. J.
2019. Path planning with CPD heuristics. In Proceedings of
the 28th International Joint Conference on Artificial Intelli-
gence, 1199–1205. AAAI Press.
Botea, A. 2011. Ultra-Fast Optimal Pathfinding without
Runtime Search. In Proceedings of the AAAI Conference on
Artificial Intelligence and Interactive Digital Entertainment
(AIIDE).
Botea, A.; and Harabor, D. 2013. Path planning with com-
pressed all-pairs shortest paths data. In Twenty-Third Inter-
national Conference on Automated Planning and Schedul-
ing.

Delling, D.; Goldberg, A. V.; Pajor, T.; and Werneck, R. F.
2017. Customizable Route Planning in Road Networks.
Transportation Science 51(2): 566–591. doi:10.1287/trsc.
2014.0579.
Delling, D.; Kobitzsch, M.; and Werneck, R. F. 2014. Cus-
tomizing driving directions with GPUs. In European Con-
ference on Parallel Processing, 728–739. Springer.
Department of Transport, Victoria. 2016. Victorian Inte-
grated Survey of Travel and Activity . https://transport.vic.
gov.au/about/data-and-research/vista.
Dibbelt, J.; Strasser, B.; and Wagner, D. 2014. Customiz-
able Contraction Hierarchies. In Experimental Algorithms
- 13th International Symposium, SEA 2014, Proceedings,
271–282.
Florian, M.; Mahut, M.; and Tremblay, N. 2008. Application
of a simulation-based dynamic traffic assignment model.
European Journal of Operational Research 189(3): 1381–
1392.
Funke, S.; and Storandt, S. 2015. Personalized route plan-
ning in road networks. In Proceedings of the 23rd SIGSPA-
TIAL International Conference on Advances in Geographic
Information Systems, 1–10.
Geisberger, R. 2015. Route planning. US Patent 9,175,972.
Accessed: 2021-02-15.
Geisberger, R.; Sanders, P.; Schultes, D.; and Delling, D.
2008. Contraction Hierarchies: Faster and Simpler Hierar-
chical Routing in Road Networks. In WEA, 319–333.
Geisberger, R.; Sanders, P.; Schultes, D.; and Vetter, C.
2012. Exact routing in large road networks using contrac-
tion hierarchies. Transportation Science 46(3): 388–404.
McSherry, F.; Isard, M.; and Murray, D. G. 2015. Scalabil-
ity! But at what COST? In 15th Workshop on Hot Topics in
Operating Systems (HotOS XV).
OpenStreetMap contributors. 2017. Planet dump. https://
planet.osm.org. Accessed on: 2020-02-15.
Schultes, D.; and Sanders, P. 2007. Dynamic Highway-Node
Routing. In International Workshop on Experimental and
Efficient Algorithms, 66–79. Springer.
Strasser, B.; Botea, A.; and Harabor, D. 2015. Compress-
ing Optimal Paths with Run Length Encoding. Journal of
Artificial Intelligence Research 54: 593–629.
Zhao, S.; Chiari, M.; Botea, A.; Harabor, A. G. D.; Saetti, A.;
and Stuckey, P. J. 2020. Bounded Suboptimal Path Planning
with Compressed Path Databases. In Beck, C.; Karpas, E.;
and Sohrabi, S., eds., Proceedings of the 30th International
Conference on Automated Planning and Scheduling, 333–
341. AAAI Press.

