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Abstract. The municipal solid waste system is a complex reverse logis-
tic chain which comprises several optimisation problems. Although these
problems are interdependent – i.e., the solution to one of the problems
restricts the solution to the other – they are usually solved sequentially in
the related literature because each is usually a computationally complex
problem. We address two of the tactical planning problems in this chain
by means of a Benders decomposition approach: determining the location
and/or capacity of garbage accumulation points, and the design of col-
lection routes for vehicles. We also propose a set of valid inequalities to
speed up the resolution process. Our approach manages to solve medium-
sized real-world instances in the city of Bah́ıa Blanca, Argentina, showing
smaller computing times in comparison to solving a full MIP model.

Keywords: municipal solid waste; reverse supply chain; integrated allocation-
routing problem; Benders decomposition algorithm; valid inequalities.

1 Introduction

Regardless of their size, city councils have the duty to provide efficient service
to their constituents. Municipal Solid Waste (MSW) management is a crucial
example of such a service. It has direct economic and social impacts; poor collec-
tion service can be both expensive and unsanitary. In this paper, we will focus
on a less traditional MSW design called Garbage Accumulation Points (GAP).
Instead of providing a “door-to-door” pickup of garbage, constituents have to
drop their garbage at specific facility – the GAPs. These facilities can range
from collective bins to recycling centres. When using GAPs, MSW management
comprises the following design decisions:

– The design of a pre-collection network, which consists in defining the location
and capacity of GAPs.
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– The design and schedule of routes for collection vehicles.

The geographical distribution of GAPs affects the actual route that the collec-
tion vehicles must perform. Additionally, the storage capacity of these sites will
define the visit frequency in order to avoid overflow. Finally, the availability and
type of vehicles1 affect the distribution and capacity of the GAPs in a (global)
optimal solution. Thus, there is a trade-off between the cost of the installation of
GAPs and the routing cost; solving both simultaneously is often beneficial [12].
However, solutions in the literature [7,10,20] often address each separately. This
is due to the complexity of tackling MSW as a whole. Indeed, only solving the
design of routes is tantamount to solving a Vehicle Routing Problem (VRP) [23],
a well-known NP-hard problem.

In this paper, we propose the following contributions to the field of MSW
management with GAPs:

– A novel mathematical model which combines the allocation of bin arrange-
ments to GAPs and defining collection routes (Section 3.1).

– A Benders decomposition-based approach to tackle the resulting problem
(Section 4).

The problem we are tackling is an “inventory routing problem” [4]. The resulting
formulation is a mixed-integer program (MIP) which is still too large to be
tractable. However, we can see it as a combination of two problems:

1. a routing problem, similar to a vehicle routing problem [23]; and,
2. an allocation problem, similar to a nonlinear resource allocation problem [3]

– in which the used amount of resource (bin) should be minimized, though
not limited.

This natural decomposition lead us to use Benders decomposition [1], a well-
suited method for problems with this structure. Benders decomposition works
by solving such problems in an iterative fashion. First, it solves the difficult part
to generate a candidate solutions. It then checks this solution against the dual
of the easy part. From the dual solution, it either terminates, when the dual
solution’s objective value is equal to an incumbent; or, it generates constraints,
called “Benders cuts,” which are added to the difficult part and the problem
solved anew.

However, we cannot use standard Benders decomposition because the sub-
problem contains integer variables. Therefore, we use a framework called Unified
branch-and-Benders-cut (UB&BC) [17]. This framework is based on a modified
Branch-and-Cut (B&C) with callbacks from a commercial solver. In the call-
backs, it derives dual information and an upper bound for the subproblem.
Using these, it terminates the branch-and-bound tree with a set of open so-
lutions – whose objective function value falls below the best upper bound. To
find the global optimum, the B&C is followed by a post-processing phase where
the framework solves those open solutions to integer optimality.

1 Mainly capacity, but could also be cost.
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We test our model on a real-world use case: the city of Bah́ıa Blanca, Ar-
gentina (Section 6). Although the city currently uses a door-to-door collection
service, they are interested in switching to GAPs. We simulated instances using
data from a survey [5] and provide optimal allocation and routing for a variety of
scenarios. Finally, we present our conclusions and future directions in Section 7.

2 A working example

In this section we will present a short example to illustrate the workings of our
solution approach. We will use a toy instance shown in Fig. 1a. It comprises:
a two-day-horizon, two GAPs, and two vehicles. We also consider two types of
waste bins with a storage capacities of 1.1m3 and 1.73m3 respectively.

We will now show the iterations the solution algorithm takes.2 At each iter-
ation, we will report:

– the master solution (routing cost, which includes GAP allocation per vehicle
per day);

– the objective function value of the LP relaxation of the subproblem (lower
bound);

– the heuristic value (upper bound); and,
– the total cost of the solution.

A graphical representation of the iterations is provided in Figs. 1b to 1d.

Iteration 1. The first solution uses one vehicles on two days and one vehicle
the second day only.

v0,0 : (0, 2)→ (2, 0)

v0,1 : (0, 2)→ (2, 0)

v1,0 : (0, 1)→ (1, 0)

The routing cost is: 494.2. The LP relaxation has an objective function value
of 7.96 while the heuristic has a value of 10.48. We add a Benders cut to the
master problem and continue.

Iteration 2. The second solution uses two vehicles with different routes during
one day:

v0 : (0, 2)→ (2, 0)

v1 : (0, 1)→ (1, 0)

The routing cost is: 381.8. The LP relaxation has an objective function value
of 7.06 while the heuristic has a value of 10.48. We add a Benders cut to the
master problem and continue.

2 We use the complete problem (M1) augmented with valid inequalities Eqs. (2) to (4).
The Benders cuts we generate are “optimality cuts” given by Eq. (8b).
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Iteration 3. The third solution found uses a single vehicle with the same route
on both days, given by:

v0 : (0, 1)→ (1, 2)→ (2, 0)

The routing cost is: 316.8. The LP relaxation has an objective function value
of 8.58 while the heuristic has a value of 10.48. We add a Benders cut to the
master problem and continue.

At this point, the B&C will finish as no improving solution can be found,
we can progress to the post-processing.

(a) Location of the depot and the two
GAPs (green circles) on the toy instance.

(b) It. 1: The first (blue) vehicle uses its
route both days, while the second (red)
vehicle only operates on the first day.

(c) It. 2: Both vehicles operate during the
first day.

(d) It. 3: Only one vehicle operates dur-
ing one day

Post-processing. At the start of the post-processing phase, the UB&BC or-
ders solutions according to their lower bound values. In this case, it will
process the solutions in reverse order: 3, 2, 1.

Starting with the solution found in Iteration 3, we solve the subproblem to
integer optimality. This gives an optimal value of 10.48 – the same as the
heuristic. Being an integer value, it can be used to update the upper bound
to: 347.28 (routing + delivery).
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Then, the framework verifies that the remaining open solutions’ values are
lower that the new-found upper bound. Both solutions found at Iterations 1
and 2 exceed the best upper bound and are thus skipped.

Our approach has managed to find the optimal solution to the problem. It did
so as an integrated algorithm which solved the routing and allocation problems
at once.

3 A mathematical model of MSW

3.1 Model formulation

The model has the following sets:

– I: the set of potential GAPs.
– L = {l0, l1, . . . , l|L|}: is an ordered set of vehicles. We consider a homogeneous

and finite fleet of vehicles.
– T : the set of days in the time horizon, which coincides with a week (seven

days).
– R: the set of possible visit combinations.
– U : the set of all bin arrangements that can be installed in a GAP.

A potential GAP i ∈ I is a predefined location in an urban area in which bins
can be installed. We define the superset: I0 = I ∪ 0, where 0 is the depot from
which vehicles start and finish their daily tours, and where the collected waste
is deposited. We also define a special notation for the set of edges given a set of
nodes: E(·), such that: E(I) = { (i, j) | i ∈ I, j ∈ I, i 6= j }. Bin arrangements are
set of bins that are feasible to install in a GAP, respecting the space limitation.

We now define the parameters of the model:

– Q: vehicle capacity.
– cig: travel time between i to g.
– si: service time of GAP i.
– bi: waste generation per day at GAP i.
– capu: capacity of bin arrangement u.
– cinu: adjusted cost of installing bin arrangement u for the time horizon T .
– α: cost per kilometre of transportation.
– βr: maximum number of days between two consecutive visits of the visit

combination r.
– art: 1 if day t is included in visit combination r.
– TL: time limit of the working day.

Notice that cinu is an adjusted cost. This is because we are considering two
different level of decision and cost:

1. a strategic decision that involves purchasing and installing the bin arrange-
ments that will last probably for several years; and,

2. a tactical decision which involves the transport costs of the routing sched-
ule [19].
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Therefore, the cost assigned to a bin arrangement (cinu) includes a proportional
part of the purchase/installation cost and the maintenance cost. With regards
to parameters art and βr, they can be introduced with an example:

Example 1. Let time horizon T be a week – i. e., T = {t1, t2, t3, t4, t5, t6, t7}.
Then, one possible visit combination r∗ ∈ R is {t1, t3, t5, t7}. In this case, we
have: ar∗t1 = ar∗t3 = ar∗t5 = ar∗t7 = 1, and, conversely: ar∗t2 = ar∗t4 =
ar∗t6 = 0. Thus, the maximum number of days between two consecutive visits
that this combination has is two days: βr∗ = 2, and the chosen bin arrangement
for this GAP must be able to store the waste generated in two days. (A similar
consideration is performed in [12].)

Finally, we define the following decision variables:

– xiglt: binary variable set to 1 if vehicle l performs the collection route between
GAPs i and g on day t, 0 otherwise.

– viglt: continuous variable representing the load of vehicle l along the path
between GAP i and g on day t.

– mir: binary variable set to 1 if visit combination r is assigned to GAP i, 0
otherwise.

– nui: binary variable set to 1 if bin arrangement u ∈ U is used for GAP i, 0
otherwise.

We can now present the mathematical model for the MSW management problem:

min
∑
i∈I
u∈U

nui cinu + α
∑

i,g∈E(I0)

cig

∑
l∈L
t∈T

xiqlt

 (M1)

s.t.
∑
u∈U

nui capu ≥
∑
r∈R

bimirβr ∀ i ∈ I (1a)∑
u∈U

nui = 1 ∀ i ∈ I (1b)∑
r∈R

mir = 1 ∀ i ∈ I (1c)∑
g∈I0,g 6=i

l∈L

xiglt −
∑
r∈R

artmir = 0 ∀ t ∈ T, i ∈ I (1d)

∑
i∈I0,i6=q

xiqlt −
∑

g∈I0,g 6=q

xqglt = 0 ∀ q ∈ I0, l ∈ L, t ∈ T (1e)

∑
i∈I

x0ilt ≤ 1 ∀ l ∈ L, t ∈ T (1f)∑
i,g∈E(I0)

(cig + si) xiglt ≤ TL ∀ l ∈ L, t ∈ T (1g)

viglt ≤ Q xiglt ∀ (i, j) ∈ E(I0), l ∈ L, t ∈ T (1h)
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∑
i∈I0,i6=g

viglt + bg
∑
r∈R

(mgr βr) ≤
∑

i∈I0,i6=g

vgilt +Q

1−
∑

i∈I0,i6=g

xiglt


∀ g ∈ I, l ∈ L, t ∈ T (1i)

v ≥ 0;n, x, b ∈ B

The objective function is the sum of the routing cost and the adjusted cost
of installing bins. Equation (1a) limits the maximum amount of garbage that
can be accumulated in a GAP to the installed capacity of the bin arrangement.
Equation (1b) enforces that one bin arrangement has to be chosen for each GAP.
Equation (1c) establishes that one visit combination is assigned to each GAP.
Equation (1d) ensures that each GAP is visited by the collection vehicle the days
that corresponds to the assigned visit combination. Equation (1e) ensures that if
a vehicle visits a GAP, it leaves the GAP on the same day. Equation (1f) states
that every vehicle can be used at most once a day. Equation (1g) guarantees
that a tour does not last longer than the allowable time limit associated with
the working day of the drivers. Equation (1h) limits the total amount of waste
collected in a tour to the vehicle capacity. Equation (1i) establishes that the
outbound flow after visiting a GAP equals the inbound flow plus the waste
collected from that GAP and, thus, also forbids subtours.

3.2 Valid inequalities

The model presented above for the MSW (M1) is still a difficult problem. In
particular, it contains a lot of symmetric solutions. Two solutions are said to be
symmetric if they have the same objective function value but different variable
assignments. Consider the following: during a given day, two trucks undertaking
the same collection route would have the same cost. There is no way for the
solver to omit one of them.

One way to address this issue is to add Valid Inequalities (VIs) to the model.
A VI is a constraint that reduces the feasible polytope of the problem without
removing every optimal solution. We decided to focus on VIs for the routing part
of the problem because the allocation part is easy in comparison. For examples
of VIs in the context of vehicle routing problems, we refer the interested reader
to [6].

One thing to remember is that our graph is asymmetric. Therefore, we do not
need to address symmetries in routes with the same GAPs. We have developed
the following valid inequalities to remove as much symmetry from the optimal
solutions as possible.

Empty start. A vehicle must start its tour unloaded. This prevents solutions
with different delivery plans – when a vehicle finishes its collection tour below
full capacity, we can consider another solution where the vehicle starts with any
amount less than the difference.

v0glt = 0,∀ g ∈ I, l ∈ L, t ∈ T (2)
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Vehicle ordering. We impose that a vehicle with index l can only leave the
depot if the vehicle with index l − 1 has. In the case where a solution does not
use all available vehicles, we can consider swapping an unused vehicle with a
used one. For brevity, we define: L′ = L \ {0}, as the set of vehicles minus the
first one. ∑

i∈I
x0ilt ≤

∑
i∈I

x0ipt,∀ l ∈ L′, p = l − 1, t ∈ T (3)

Furthest visit. We assign the furthest GAP from the depot to the first vehicle.
Because each GAP must be visited at most once a day, so does the furthest.
Because only one vehicle can visit each GAP on a given day, we can forbid others
vehicle than the first vehicle – using L′ defined above – to visit the furthest GAP.∑

i∈I,t∈T
xiglt = 0,∀ l ∈ L′, g = argmax

i∈I
c0i (4)

4 A resolution approach based on Benders decomposition

The classic Benders decomposition was devised in [1] for addressing large MIPs
that have a characteristic block diagonal structure. In summary, it starts by de-
composing the original problem into a master problem and a subproblem. The
master problem is a relaxation of the original problem used to determine the
values of a subset of its variables. It is formed by retaining the complicating
variables, and projecting out the other variables and replacing them with an
incumbent. The subproblem is formed around the projected variables and a pa-
rameterised version of the complicating variables. By enumerating the extreme
points and rays of the subproblem, the algorithm defines the projected costs and
the feasibility requirements, respectively, of the complicating variables. Because
this enumeration is seldom tractable, the algorithm proceeds in the following
manner:

1. It solves the (relaxed) master problem to optimality, which yields a candidate
solution.

2. This candidate solution is used as a parameter in the subproblem.
3. The resulting problem is solved to optimality and, using LP duality, a set of

coefficients are retrieved.
4. These coefficients are used to generate a constraint, called a “Benders cut,”

which is added to the master problem.
5. If the objective function value of the subproblem is equal to the incumbent

value in the master problem, the algorithm stops. Otherwise, it repeats from
point 1. using the master problem with the additional constraint.

One key limitation of the classic Benders decomposition is that the subproblem
cannot contain integer variables. This is because of point 3. above: the method
needs to use LP duality, which is not well-defined for MIPs. We use a recent
framework called Unified branch-and-Benders-cut (UB&BC) [18] to bypass this
issue. This new framework operates by using a modified B&C where, at each
integer node, it:
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1. solves the LP relaxation of the subproblem to get a lower bound and generate
Benders cuts; and,

2. uses a heuristic to determine if the master solution is feasible and, if yes, a
valid, global upper bound.

The second point is key: by maintaining a valid upper bound, the framework
ensures that no optimal solution is removed during the search. However, this
leads to having a set of open solutions after finishing the B&C tree – solutions
whose objective function value falls between the lower and upper bound. Thus,
the UB&BC finishes by a post-processing phase during which subproblems as-
sociated with open solutions are solved to integer optimality. The combination
of maintaining a global upper bound and using a post-processing phase enables
the framework to find an optimal solution.

As stated in Section 3.1, the problem addressed in this work comprises two
characteristic decision-making problems in MSW. On the one hand, the alloca-
tion of bins in the GAPs and, on the other, the design and schedule of routes
for the collection vehicles. This division can be exploited by applying Benders
decomposition. The bins allocation equations are moved to the subproblem while
the master problem aims at designing the schedule and routes of the collection
vehicles.

4.1 Creating the subproblem

The subproblem, which aims at allocating the bins of each GAP, is an integer
programming problem:

q(m) = min
∑
i∈I
u∈U

nui cinu (SB)

s.t.
∑
u∈U

nui capu ≥ bi
∑
r∈R

mir βr ∀ i ∈ I (5a)∑
u∈U

nui = 1 ∀ i ∈ I (5b)

n ∈ B

We define the positive continuous variables δi and unrestricted continuous vari-
ables γi, the dual variables of Eqs. (5a) and (5b) respectively. The dual formula-
tion of the LP relaxation of (SB), which will be used to generate cuts, is then:

qLP (m) = max
∑
i∈I

(
γi − δibi

∑
r∈R

(mirβr)

)
(LP)

s.t. γi − δi
∑
u∈U

capu ≤
∑
u∈U

nui ∀i ∈ I (6a)

δ, γ ≥ 0
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Heuristic for the subproblem. In order to apply Benders decomposition
when the subproblem has integer variables, an efficient method for solving the
subproblem is required. Therefore, we devised a rounding heuristic procedure
based on the LP relaxation of the subproblem:

1. We solve the LP relaxation of (SB). The (relaxed) solution will contain nui
with fractional values.

2. We estimate the joint fractional capacity Kf
i of each GAP using:

Kf
i =

∑
u∈U

nui capu (7)

3. We define a feasible (non-fractional) bin arrangement u ∈ U for each GAP
by finding the bin arrangement with minimal cost among those with storage
capacity larger than Kf

i . It is guaranteed that there will always be a bin
arrangement which respects this rule since considering Eqs. (5b) and (7)

implies that: Kf
i ≤ capu∗,∀ i ∈ I, where u∗ = argmaxu∈U{capu}.

4.2 Stating the master problem

The master problem retains the same constraint structure as (M1) but the bin
allocation part is replaced by an incumbent variable q. Let us consider the set of
extreme points (O) and extreme rays (F) of the LP relaxation of (SB). These
generate the optimality (8b) and feasibility (8a) cuts, respectively. Therefore,
the master problem is:

min α
∑

i,g∈E(I0)

cig

∑
l∈L
t∈T

xiglt

+ q (MPB)

s.t. Eqs. (1c) to (1i) and (2) to (4)∑
i∈I

(
γfi − δ

f
i bi
∑
r∈R

(βrmir)

)
≤ 0 ∀ f ∈ F (8a)

∑
i∈I

(
γfi − δ

o
i bi
∑
r∈R

(βrmir)

)
≤ q ∀ o ∈ O (8b)

v ≥ 0; q ∈ R;x ∈ B

5 Literature review

Allocation of bins and routing problems have been thoroughly studied as separate
problems in the MSW related literature [16]. Comprehensive reviews of the study
of these problems separately can be found in [20] and [10], respectively. However,
the number of works considering integrated approaches is more scarce.

Among the works that consider an integrated approach, [14] presented a
study case of the Tunisian city of Sousse, considering uncertainty in waste gen-
eration at GAPs. They proposed a transformed formulation to handle stochastic
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waste generation and solved the problem in a heuristic fashion: first they applied
the k-means clustering algorithm to group the GAPs into sectors and later they
applied an exact model solved with CPLEX to determine both the number of
bins and the collection route of each sector. They consider that all GAPs are to
be collected daily.

Another example is [12], which proposed an integrated approach where the
bins allocation problem is solved jointly with the routing schedule. The authors
compare different methods to solve this problem based on a Variable Neighbour-
hood Search (VNS) algorithm, for solving the problem hierarchically – i. e., first
solving the bin allocation and then the routing and vice versa – and integrated
approaches. They found that integrated approaches overcome hierarchical ones.

A further complex approach is presented in [13] for solving an integrated
model that aims to simultaneously locate GAPs, size the storage capacity of
each GAP (allocate bins) and set the weekly collection schedule and routes in
the context of collaborative recycling problem. They solved this problem with
an Adaptive Large neighbourhood Search algorithm based on Hemmelmayr’s
implementation [11]. They performed a sensitivity analysis for several of the pa-
rameters, such as available vehicle capacities, visiting schedules or GAPs’ storage
capacities.

Although integrated models have proven to efficiently handle the trade-off [7,
9], others works have tackled these problems in a sequential fashion. For example,
[8] solved the GAP location with while considering that bins of incompatible
types – i. e., that cannot be collected by the same vehicle – are not located in
the same GAP. Then they applied an heuristic zoning algorithm to define the
routes while minimising the number of required vehicles and the total distance.
Finally, [21] solved a multi-objective bins allocation problem in which one of the
objectives was to minimise the required collection frequency.

Differently from the tactical problem that we address in this paper, other
authors have used Bender’s decomposition approaches to deal with optimization
problems of the strategic level of the MSW logistic chain, mainly considering
stochastic parameters (which is a traditional application area of Bender’s de-
composition). For example, [22] used Bender’s decomposition to model a logistic
chain of MSW in which organic waste in send from sources into treatment plants
to generate power. Uncertainty is considered in waste generation, and power
price and demand. Another case are [15], who applied Bender’s decomposition
to optimize the location and capacity selection of waste transfer stations when
considering uncertainty in the operational cost of the stations.

6 Computational experiments

The instances used for these tests are based on simulated scenarios of the city
of Bah́ıa Blanca, Argentina. Although this city still has a door-to-door collec-
tion system, the local government and citizens are interested in studying more
efficient collection systems that allow them to reduce the high logistic costs. In
this sense, a community bins-based will simplified the required collection logis-
tic [2,5]. Particularly the location of 76 GAPs in a central neighbourhood of the
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city and the generation rate were obtained from a recent field work in a central
neighbourhood of the city [5]. We consider a homogeneous VRP by using the
standard collection vehicle of Bah́ıa Blanca, a 20 m3 bin-tipper truck. The GAPs
can hold three types of commercial bin with purchasing and maintenance cost
(cinu) 2.76, 3.53 and 5.24 monetary units (m.u.) and capacities (capu) 1.1, 1.73
and 3.1 m3, respectively. Information about the travel time between GAPs was
estimated with Open Source Routing Machine3 using the approach proposed by
Vázquez Brust [24]. The algorithms are implemented in Python 3.5, and we use
a UB&BC framework called BranDec4 v0.7. For the benefit of the scientific
community, we open-sourced the instances used for the experimentation5 and
implementation. The solver used is CPLEX v12.7 in its default configuration,
we disable heuristics when running the UB&BC. We ran the experiments on a
computer with Intel Gold 6148 Skylake CPU@2.4GHz and a 4GB RAM limit.

We divide the computational experimentation in two parts. In Section 6.1
we deal with small instances in order to asses the value of the proposed valid
inequalities in the resolution approach. Then, in Section 6.2 we explore the per-
formance of the proposed Benders approach in comparison to full MIP when
solving more complex instances.

6.1 The value of valid inequalities
In order to explore the impact of valid inequalities in the resolution process we
construct instances composed by five GAPs and the Depot. These sample of five
GAPs were selected with QGIS Random Selection tool. We consider scenarios
with two vehicles and two bin arrangements per GAP, the instances are format-
ted as “I/T/n,” where n is the instance number. Figure 1 report the results of
solving the resulting problem with:

MIP CPLEX using (M1);
MIP + VIs CPLEX using (M1) augmented with VIs (2) to (4);
BD our Benders approach; and,
BD + VIs our Benders approach augmented with VIs (2) to (4).

We ran five iterations of each configuration and report the minimum solve time.
We can see in Fig. 1 that the VIs are necessary to have reasonable solve times.
Both the MIP and our Benders approach benefit from them. When instances
grow in size, that is when the time horizon is greater than two days, version
with VIs do not manage to solve most instances. This experiment is not enough
to tell for certain whether the Benders approach is better than MIP.

6.2 Using more bin arrangements
The complexity of the problem grows with the size of the instance becoming
increasingly time consuming for the algorithm. Indeed, we now use a larger set
of bin arrangements (set U) for the GAPs in order to have a more complex
subproblem with a larger number of binary variables. In Fig. 2 we can see the

3 http://project-osrm.org/
4 https://gitlab.com/Soha/brandec
5 http://doi.org/10.13140/RG.2.2.19210.49604
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Fig. 1: Results of using different methods, with or without VIs, to solve a set of
reduced instances.

time taken to find the optimal solution on a set of instances by our approach
(BD) vs. solving the full MIP model with CPLEX (MIP). All the solutions have
the valid inequalities (2) to (4) included. Our approach is, on average, more
than one order of magnitude faster than using a full MIP. We are able to solve
instances up to 7 GAPs, which the MIP cannot.

7 Conclusion

Municipal solid waste management is a critical issue in modern cities. Besides the
direct environmental and social problems that can arise when it is mishandled, it
usually represents a large portion of the municipal budgetary expense. Therefore,
intelligent decision support tools that can efficiently provide this service to the
citizens while also reducing the cost of the system can be a major asset for
decision makers. This work addresses two common tactical problems that arise
in the reverse logistic chain of solid waste: the design of a pre-collection network
and the routing schedule of collection vehicles. These problems, which are usually
solved individually in the related literature, are interdependent in the sense that
the solution to one of the problem affects the other.

This work proposed an integrated approach that solves both problems simul-
taneously, making the trade-off an intrinsic element of the model. In particular, a
new MIP formulation, valid inequalities and resolution approach based on Ben-
ders decomposition, using unified branch-and-Benders-cut, were proposed. Since
the subproblem contains integer variables, we devised a heuristic for solving the
bin allocation problem. Our approach was able to solve real-world instances in
the city of Bah́ıa Blanca. Tests performed on small instances showed the compet-
itiveness of the valid inequalities to speed up the resolution process. Then, the
resolution of larger instances showed that the proposed Benders approach was
more competitive than full MIP. While not yet able to solve full-size instances,
our approach holds promises to scale beyond a traditional MIP approach.
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Fig. 2: Comparison of MIP vs. our Benders approach on a variety of scenarios.
We report the time in log scale.

Future work includes expanding computational experiments with larger real-
world instances to test the scalability of the approach. Another research line is
to consider an allocation-first routing-second method. In that case, the master
problem would be comparatively simpler than the subproblem. Such an approach
would require efficient vehicle routing heuristics to work. We could also explore
heterogeneous fleet of vehicles. Indeed, the city of Bah́ıa Blanca already owns a
fleet of vans of small capacity for spot operations.
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