
Submitted to INFORMS Journal on Computing
manuscript (Please, provide the manuscript number!)

Authors are encouraged to submit new papers to INFORMS journals by means of
a style file template, which includes the journal title. However, use of a template
does not certify that the paper has been accepted for publication in the named jour-
nal. INFORMS journal templates are for the exclusive purpose of submitting to an
INFORMS journal and should not be used to distribute the papers in print or online
or to submit the papers to another publication.

Unified Branch-and-Benders-Cut for
Two-Stage Stochastic Mixed-Integer Programs

Arthur Mahéo
Monash University, Melbourne, Australia, arthur.maheo@monash.edu

Simon Belieres , Yossiri Adulyasak, Jean-François Cordeau
HEC Montréal, Montréal, Canada, first.last@hec.ca

Two-stage stochastic programs are a class of stochastic problems where data uncertainty is often discretized

into scenarios, making them amenable to solution approaches such as Benders decomposition. However, clas-

sic Benders decomposition is not applicable to general two-stage stochastic mixed-integer programs due to the

restriction that the second stage variables must be continuous. We propose a novel Benders decomposition-

based framework that accommodates mixed-integer variables in both stages as well as uncertainty in all the

recourse parameters. The proposed approach is a unified branch-and-Benders algorithm, where we use a

heuristic to maintain a global upper bound and a post-processing phase to determine an optimal solution.

We also study how enhanced Benders decomposition strategies such as the partial decomposition technique

can be used to improve the algorithm’s convergence. Through an extensive series of experiments, we demon-

strate that the proposed framework performs better than state-of-the-art methods. It is able to solve some

problem instances with more than one million variables in reasonable time.

Key words : Two-stage stochastic mixed-integer programs; Benders decomposition;

Branch-and-Benders-Cut;

1. Introduction

Stochastic mixed-integer programs (SMIPs) form a class of optimization problems that

combine discrete and non-convex aspects of mixed-integer programming (Wolsey 1998)

with uncertainty in the data parameters, as in stochastic programming (Birge and Lou-

veaux 1997). In such problems, the decision variables are defined in multiple stages that

characterize the moments when part of the stochastic parameter values become known.

In this study, we propose a novel Benders decomposition strategy for solving two-stage

1

https://orcid.org/0000-0001-9175-3224
https://orcid.org/0000-0001-8245-3043

Mahéo et al.: Unified Branch-and-Benders-Cut
2 Article submitted to INFORMS Journal on Computing; manuscript no. (Please, provide the manuscript number!)

scenario-based SMIP models (Küçükyavuz and Sen 2017), where decision variables decom-

pose into a set of first-stage decisions to be made before the realization of the random

events, and a set of second-stage decisions (also referred to as recourse decisions) to be

made after this information is revealed.

Let ω̃ be a random vector drawn from a discrete finite probability space (Ω,F ,P) where

the sample space Ω defines the set of all possible outcomes, the event space F defines the

set of events, an event being a set of outcomes in the sample space, and function P assigns

each event a probability between 0 and 1. Thus, the realization of a particular scenario ω of

ω̃ has a non-zero probability pω to occur and defines a possible outcome for the stochastic

parameters. Let E[·] be the usual mathematical expectation operator with respect to ω̃. A

standard formulation for two-stage SMIPs is:

min cT ·x+E[h(x, ω̃)] (1st stage)

s.t. Ax≥ b (1a)

x∈X,

where, for a given scenario ω of ω̃, h(x,ω) is defined as:

min h(x,ω) = qTω · yω (2nd stage)

s.t. Tω ·x+Wω · yω ≥ hω (2a)

yω ∈Y.

The sets X ⊆ Rn1
+ and Y ⊆ Rn2

+ define the domains of the first-stage variables, x, and

the second-stage variables, yω, respectively. Input parameters c∈Rn1,A∈Rm1×n1, b∈Rm1

are known in advance, while qω ∈ Rn2, Tω ∈ Rm2×n1,Wω ∈ Rm2×n2, hω ∈ Rm2 are scenario-

dependent. The objective function aims to minimize the cost of the first-stage decisions

and the expected value of the second-stage costs. Prior to the realization of the random

vector ω̃, the decision maker determines values for the first-stage variables that satisfy

constraints (1a). The realization of a particular scenario ω of ω̃ sets the values for the

stochastic parameters – i. e., the recourse cost qω, the technology matrix Tω, the recourse

matrix Wω and the right-hand side hω. Based on this information, the decision maker

formulates the recourse problem and determines values for the second-stage variables that

satisfy constraints (2a).

Mahéo et al.: Unified Branch-and-Benders-Cut
Article submitted to INFORMS Journal on Computing; manuscript no. (Please, provide the manuscript number!) 3

By duplicating second-stage variables according to the scenarios, one can formulate

two-stage SMIPs in an extensive form. The so-called deterministic equivalent formulation

(DEF) is:

min cT ·x+
∑
ω∈Ω

pω · qTω · yω (DEF)

s.t. Ax≥ b (3a)

Tω ·x+Wω · yω ≥ hω ∀ω ∈Ω (3b)

x∈X, yω ∈Y,∀ω ∈Ω,

where variables yω model the second-stage decisions associated with scenario ω. While

this formulation can be solved by a general-purpose mixed-integer programming solver,

it is unlikely to be solved in reasonable time if the number of scenarios is large. How-

ever, the DEF exhibits what is called a block-angular structure, which can be leveraged by

decomposition-based algorithms. Indeed, once the first-stage variables are fixed, it decom-

poses into |Ω| independent problems.

Two-stage SMIPs can be classified according to the type of the variables involved in the

second stage. When second-stage variables are continuous, h(x,ω) is a convex piece-wise

linear function. As a result, E[h(x, ω̃)] satisfies convexity, and standard decomposition-

based approaches, such as Benders decomposition (Benders 1962), can be applied. On the

other hand, E[h(x, ω̃)] is no longer convex when the second-stage involves discrete vari-

ables, breaking down the standard decomposition-based approaches. Consequently, few

methods in the literature are designed to solve two-stage SMIPs with discrete recourse,

and most of them necessitate the first-stage variables to be binary (e. g., Sen and Higle

2005, Sen and Sherali 2006, Ntaimo 2010, Gade et al. 2014, Atakan and Sen 2018). There

also exist algorithmic strategies that accommodate mixed-integer decisions in both stages.

Unfortunately, it is often difficult to assess their scalability, whether because the corre-

sponding articles do not provide a computational study (e. g., Carøe and Schultz 1999,

Ralphs and Hassanzadeh 2014) or because the method is tested only on small instances

(e. g., Ahmed et al. 2004, Guo et al. 2015). To the best of our knowledge, one of the most

efficient algorithms for generic two-stage SMIPs in the literature is that proposed by Qi

and Sen (2017).

Mahéo et al.: Unified Branch-and-Benders-Cut
4 Article submitted to INFORMS Journal on Computing; manuscript no. (Please, provide the manuscript number!)

In this paper, we introduce the Unified Branch-and-Benders-Cut (UB&BC), a new Ben-

ders decomposition-based approach (Benders 1962) for solving two-stage SMIPs with gen-

eral mixed-integer decisions in both stages and in all the recourse parameters. Our solution

strategy can be embedded in any MIP solver with callbacks and can be used in conjunc-

tion with a heuristic applied to the recourse subproblem, which corresponds to a set of

deterministic MIPs for the different scenarios. This is particularly useful when the (sepa-

rated) subproblem has a combinatorial structure and one can leverage efficient heuristics

originally developed for the deterministic version of that problem. While the method we

propose is relatively simple to implement, it is competitive against the state-of-the-art

approaches.

Benders decomposition, also referred to as the L-shaped method (Van Slyke and Wets

1969) in the context of stochastic programming, is a well-established algorithm that solves

large-scale MIPs by dividing the computational burden into smaller parts. Specifically,

the MIP is decomposed into a master problem and one or several subproblems. The mas-

ter problem is a relaxation of the original problem that determines values for a subset

of the decision variables and an estimate of the optimal objective function value of the

subproblems. The solution obtained by solving the master problem is used to formulate

the subproblems, which aim to determine values for the remaining variables. The classic

Benders algorithm proceeds as follows: (i) it solves the master problem to optimality, (ii)

it uses the solution found to formulate the subproblems, (iii) it solves the subproblems

to determine a feasible solution to the original MIP, (iv) using LP duality, it derives the

so-called Benders cuts to add to the master problem; finally, (v) it repeats from point (i)

until a provably optimal solution to the original MIP is found. For a recent survey on

Benders decomposition, we refer the interested reader to Rahmaniani et al. (2017). Note

that the Benders algorithm can also be integrated inside a branch-and-cut (B&C) scheme,

where the master problem is solved only once. Subproblems act as separation problems

to generate Benders cuts and are solved at each branching node or only when an inte-

ger master problem solution is found in the tree. The resulting branch-and-Benders-cut

(B&BC, Fortz and Poss 2009, De Camargo et al. 2011, Gendron et al. 2016) has become

the standard implementation and is the basis of the UB&BC.

As explained earlier, the standard Benders algorithm does not directly apply to two-

stage SMIPs with discrete variables in the second stage. This is due to the fact that

Mahéo et al.: Unified Branch-and-Benders-Cut
Article submitted to INFORMS Journal on Computing; manuscript no. (Please, provide the manuscript number!) 5

the algorithm’s convergence relies on Benders cuts obtained by applying standard lin-

ear programming duality theory to the subproblems. Obviously, we cannot rely on the

same mechanism to solve two-stage SMIPs with discrete recourse. In the context of two-

stage stochastic programming, the challenge of extending the Benders decomposition to

accommodate discrete variables in the second stage has led to multiple studies. A common

strategy is to solve the subproblems to integer optimality and develop valid cuts without

using the dual information (Laporte and Louveaux 1993). Another approach consists in

solving the LP relaxation of the scenario subproblems to generate standard Benders cuts

and using cutting-plane procedures to characterize convexifications of the second-stage

problems (e. g., Sherali and Fraticelli 2002, Sen and Higle 2005).

To accommodate general mixed-integer variables in the second stage, we present an

intermediate approach that uses linear programming duality theory to generate standard

Benders cuts and solves to integer optimality subproblems that correspond to promising

master solutions. We propose a new Benders decomposition-based algorithm where a mod-

ified B&C is used to solve the master problem. Whenever an integer solution x̂ is found in a

branch-and-bound-tree of the master, (i) we solve the scenario subproblem LP relaxations

to compute a lower bound lb(x̂) associated with this integer master problem solution and

generate standard Benders cuts, and (ii) we solve the scenario subproblems heuristically to

determine a valid upper bound ub(x̂). In Figure 1, we show the progress of the lower bound,

lb(x̂), and the upper bound, ub(x̂), with successive candidate solutions. Considering that

the B&C finishes at iteration i, there exists a gap between the best lower bound, lb∗, and

the best upper bound, ub∗. Therefore, we retain a set of a set of open solutions: solutions

whose LP relaxation lower bound lb(x̂) is lower than the best upper bound. This process,

which takes advantage of a single branch-and-bound tree in solving the master problem,

successively refines global upper and lower bounds and guarantees that the global optimal

solution is among the open solutions remaining at the end of the branch-and-bound pro-

cess of the master problem. Finally, we then need to solve these open solutions to integer

optimality to determine the global optimum (opt).

Our contribution is threefold. First, we introduce a new exact algorithmic strategy for

solving two-stage stochastic programs with general mixed-integer variables in both stages.

Second, we assess its performance on instances of the stochastic server location problem

(SSLP, Ntaimo and Sen 2005), which are frequently used to benchmark algorithms for

Mahéo et al.: Unified Branch-and-Benders-Cut
6 Article submitted to INFORMS Journal on Computing; manuscript no. (Please, provide the manuscript number!)

opt
|

lb(x̂0) lb(x̂1) . . . lb(x̂∗) ub(x̂∗) . . .

lb ub

Figure 1 UB&BC makes use of a heuristic to obtain the upper bound during the branch-and-bound process of the

master problem. There could exist an integrality gap which must be closed through a post-processing

procedure applied to the open solutions at the end of the branch-and-bound process.

two-stage stochastic programs with discrete recourse (e. g., Ntaimo and Sen 2005, Guo

et al. 2015, Gade et al. 2014, Atakan and Sen 2018, Qi and Sen 2017). We computationally

demonstrate that our approach is competitive against the state-of-the-art approaches and

allows to solve open instances. Third, we present a series of experiments on instances of the

two-stage stochastic traveling salesman problem with outsourcing (2TSP) to thoroughly

analyze how the different components of UB&BC play a role in its performance. We also

enhance our solution framework by adopting the partial Benders reformulation (Crainic

et al. 2014, 2016) to improve the convergence of our algorithm.

The remainder of the paper is organized as follows. In Section 2, we review the exist-

ing solution algorithms for two-stage SMIP models with discrete second-stage variables.

Section 3 is dedicated to the description of our UB&BC while Section 4 presents the exper-

imental setup. We provide an extensive computational study in Section 5. In Section 6, we

conclude the paper and discuss future work.

2. Literature review

This section aims to review the existing exact algorithmic strategies for two-stage SMIP

models with discrete recourse. The reviewed methods are summarized in Table 1 in a

manner similar to Trapp et al. (2013) and Ralphs and Hassanzadeh (2014). For each

method, we indicate the type of variables it accommodates in both stages, as well as the

assumptions made regarding the potential stochastic parameters. We also summarize two

versions of our method that differ according to the type of Benders decomposition solved.

UB&BC Base uses a standard Benders decomposition, while UB&BC Enhanced uses a

partial Benders decomposition (Crainic et al. 2014, 2016). The latter is expected to improve

the convergence of UB&BC, but it only is applicable when parameters qω (cost parameters

of the subproblem) and Tω (nonzero coefficients of the first-stage decision variables) are

not subject to uncertainty, which is the case of the majority of the two-stage stochastic

Mahéo et al.: Unified Branch-and-Benders-Cut
Article submitted to INFORMS Journal on Computing; manuscript no. (Please, provide the manuscript number!) 7

problems in the literature. More details on partial Benders reformulations are provided in

Section 3.2.

Laporte and Louveaux (1993) extend the L-shaped method to accommodate general

mixed-integer variables in the second stage. They propose a branch-and-Benders-cut

method where valid Benders optimality cuts are derived from the objective function val-

ues of the scenario subproblems. The resulting algorithm converges in a finite number

of iterations, but suffers from two shortcomings: it is only applicable in the case of pure

binary first-stage variables, and, it requires the scenario subproblems to be solved to integer

optimality to compute the Benders cuts.

Carøe and Tind (1998) propose a generalization of the L-shaped method and use the

general duality theory to develop valid Benders optimality cuts. A cutting plane algorithm

is used to solve the scenario subproblems to integer optimality. Based on the obtained

solutions, “nonlinear dual variables” that take the form of Chvátal functions are used

to generate valid Benders optimality cuts. The generalized L-shaped method handles all

models that do not involve continuous variables in the second stage. However, the article

does not report numerical results.

To avoid solving scenario subproblems to integer optimality, multiple decomposition-

based algorithms proposed in the literature embed a cutting-plane procedure to progres-

sively characterize the convex hulls of the subproblem LP relaxations. Sherali and Fraticelli

(2002) present an L-shaped method where the scenario subproblems are approximated

using the Reformulation-Linearization Technique (RLT, Sherali and Adams 1999) and lift-

and-project cutting planes. Cuts are expressed as functions of the first-stage variables and

thus valid for all scenario subproblems. This approach tackles programs with binary vari-

ables in both stages and continuous variables in the second stage. Sherali and Zhu (2006)

present a method that also accommodates continuous variables in the first stage. They

propose a decomposition-based branch-and-bound algorithm that follows a hyperrectangu-

lar partitioning process and uses a RLT cutting-plane algorithm to convexify the scenario

subproblems.

Sen and Higle (2005) present the C3 theorem and demonstrate that the valid inequalities

associated with a given scenario subproblem can be used to derive valid inequalities for

any other scenario subproblem. Based on the C3 theorem, the authors propose the D2

algorithm, where the master and the subproblems are obtained from the convexification of

Mahéo et al.: Unified Branch-and-Benders-Cut
8 Article submitted to INFORMS Journal on Computing; manuscript no. (Please, provide the manuscript number!)

two disjunctive programs. This approach tackles problems with binary variables in both

stages and continuous variables in the second stage. Ntaimo and Sen (2005) present an

extension of the D2 algorithm that accommodates different stochastic parameters. Another

extension to the D2 algorithm is proposed by Sen and Sherali (2006) and allows general

mixed-integer variables in the second stage. In this approach, scenario subproblems are

solved with a partial branch-and-bound, and dual coefficients derived from the trees are

used to develop valid Benders cuts.

Gade et al. (2014) integrate a convexification procedure based on Gomory cuts into the

L-shaped method and solve programs with binary variables in the first stage and gen-

eral integer variables in the second stage. Qi and Sen (2017) develop new convexification

schemes based on multi-term disjunctive cuts and propose the ancestral Benders Cuts

(ABC), which allow for general mixed-integer variables in both stages. Other studies on

two-stage SMIP with discrete recourse involve solution methods based on value function

reformulation (Ahmed et al. 2004, Kong et al. 2006, Trapp et al. 2013, Ralphs and Has-

sanzadeh 2014), dual decomposition (Carøe and Schultz 1999), progressive hedging (Guo

et al. 2015, Atakan and Sen 2018), or Gröbner basis (Schultz et al. 1998).

3. Unified Branch-and-Benders-Cut

We propose a Benders decomposition-based strategy for solving two-stage stochastic

mixed-integer programs with general mixed-integer variables in both stages. The main

advantages of the approach are its simple implementation and the fact that it requires

no problem-specific components. We first present the Unified Branch-and-Benders-Cut

(UB&BC) in the context of solving a standard Benders decomposition. The strategy oper-

ates a modified branch-and-cut to identify a set of open solutions and it performs a

post-processing phase to determine the global optimum. Second, we discuss how using an

enhanced Benders decomposition strategy rather than a standard Benders decomposition

can improve the convergence of UB&BC. Specifically, we describe the partial Benders refor-

mulation proposed in Crainic et al. (2014, 2016), which can be applied when parameters

qω and Tω are not subject to uncertainty.

3.1. Description of the algorithm

In the context of two-stage stochastic programming, a standard Benders decomposition

consists of a master problem that prescribes decisions for the first-stage variables and a set

Mahéo et al.: Unified Branch-and-Benders-Cut
Article submitted to INFORMS Journal on Computing; manuscript no. (Please, provide the manuscript number!) 9

1st Stage 2nd Stage Stochastic parameters

R B Z R B Z Tω Wω hω qω

Laporte and Louveaux (1993) ? ? ? ? ? ? ?

Carøe and Tind (1998) ? ? ? ? ? ? ?

Schultz et al. (1998) ? ? ? ?

Carøe and Schultz (1999) ? ? ? ? ? ? ? ? ?

Sherali and Fraticelli (2002) ? ? ? ? ? ? ?

Ahmed et al. (2004) ? ? ? ? ? ? ? ?

Sen and Higle (2005) ? ? ? ? ?

Kong et al. (2006) ? ? ? ? ?

Sen and Sherali (2006) ? ? ? ? ? ?

Sherali and Zhu (2006) ? ? ? ? ? ?

Ntaimo (2010) ? ? ? ? ?

Trapp et al. (2013) ? ? ? ? ?

Gade et al. (2014) ? ? ? ? ? ? ?

Ralphs and Hassanzadeh (2014) ? ? ? ? ? ? ? ?

Guo et al. (2015) ? ? ? ? ? ? ? ? ?

Qi and Sen (2017) ? ? ? ? ? ? ? ? ? ?

Atakan and Sen (2018) ? ? ? ? ? ? ? ?

Current study

UB&BC Base ? ? ? ? ? ? ? ? ? ?

UB&BC Enhanced ? ? ? ? ? ? ? ?

Table 1 Characteristics of existing exact methods for two-stage SMIP models with discrete recourse

of scenario subproblems that compute optimal values for the second-stage variables, given

fixed values for x. Let Fω and Oω denote the sets of extreme rays and extreme points of

the dual subproblem polyhedron associated with scenario ω, respectively. The standard

master problem is formulated as follows:

min cT ·x+
∑
ω∈Ω

pω · zω (Standard master problem)

s.t. Ax≥ b (4a)

f(hω−Tωx)≤ 0 ∀f ∈Fω,∀ω ∈Ω (4b)

o(hω−Tωx)≤ zω ∀o∈Oω,∀ω ∈Ω (4c)

x∈X.

Mahéo et al.: Unified Branch-and-Benders-Cut
10 Article submitted to INFORMS Journal on Computing; manuscript no. (Please, provide the manuscript number!)

The objective function computes the cost of the first-stage solution and an expected

recourse cost, with variable zω providing the expected recourse cost for scenario ω ∈Ω. Con-

straints (4a) characterize the feasible region for the first-stage variables. Constraints (4b)

and (4c) are the standard feasibility and optimality cuts added dynamically after solving

the scenario subproblems. Given a first-stage solution x̂ computed by the master problem,

the subproblem associated with scenario ω is formulated as follows:

min qTω · yω (Standard scenario subproblem)

s.t. Wω · yω ≥ hω−Tω · x̂ (5a)

yω ∈Y.

The objective function reflects the cost associated with the second-stage solution while

constraints (5a) characterize the feasible region for the second-stage variables.

As explained earlier, one cannot employ the classical Benders algorithm when subprob-

lems contain discrete variables, since these discrete variables prevent us from applying stan-

dard linear programming duality and generating Benders cuts. In practice, there are two

main strategies for allowing the Benders algorithm to deal with discrete scenario subprob-

lems. The first strategy consists in relaxing the integrality constraints on the second-stage

variables to generate standard Benders cuts, and integrate a convexification procedure to

progressively determine the convex hull of the LP relaxations of the scenario subproblems.

The second strategy consists in solving the scenario subproblems to integer optimality and

using a procedure to derive valid cuts. Our approach is intermediate, in the sense that we

relax the integrality constraints on the second-stage variables to generate standard Ben-

ders cuts and we delay solving the subproblems to integer optimality to a post-processing

phase, at the end of which we obtain the global optimum. The UB&BC is described in

Algorithm 1.

The UB&BC operates in two phases. In the first phase, it solves the master problem

using a modified branch-and-Benders-cut (B&BC). Whenever an integer solution x̂ with

estimated recourse costs zω is found at a branch-and-bound node, it (i) solves the LP

relaxations of the scenario subproblems and adds the resulting Benders cuts to the master

problem, and (ii) solves the scenario subproblems heuristically to determine a feasible

second-stage solution when possible. Let opt(x̂) be the objective function value obtained

Mahéo et al.: Unified Branch-and-Benders-Cut
Article submitted to INFORMS Journal on Computing; manuscript no. (Please, provide the manuscript number!) 11

Algorithm 1: Unified Branch-and-Benders-Cut
Data: An original problem, P , and a subproblem heuristic, H

Z = ∅, ub∗ =∞

Define the master problem, MP , and the scenario subproblems, SPω, from P

begin Solve MP by a B&B and apply the following steps at each node in the search tree:
if LP relaxation ≥ ub∗ then

Fathom branch

else if An integer solution x̂ of the MP is found then
foreach Scenario ω ∈Ω do

Solve the LP relaxation of subproblem SPω(x̂)

Add the corresponding Benders cut to MP

if All scenario subproblem LP relaxations are feasible then
Compute the lower bound lb(x̂) and add (x̂, lb(x̂)) to Z

foreach Scenario ω ∈Ω do
Solve subproblem SPω(x̂) with the heuristic H

if A heuristic solution was found for all the scenario subproblems then
Compute the heuristic upper bound ub(x̂)

ub∗ = min(ub∗, ub(x̂))

else
Choose a variable to branch on

Rank elements of Z by ascending order according to their lower bound values

while Z 6=∅ do
Select (x̂, lb(x̂)) from Z

if lb(x̂)≤ ub∗ then
foreach Scenario ω ∈Ω do

Solve SPω(x̂) as a MIP

if All scenario subproblems are optimal then
Compute opt(x̂)

ub∗ = min(ub∗, opt(x̂))

Result: ub∗, the optimal solution of P

when solving to integer optimality the scenario subproblems associated with x̂. By solving

the LP relaxations of the scenario subproblems and using the subproblem heuristic, we

can potentially derive two bounds on opt(x̂).

For a given master problem integer solution x̂, if there is at least one subproblem LP

relaxation that is not feasible, there exists no feasible solution to the original problem

based on x̂. On the other hand, if all scenario subproblem LP relaxations are feasible, one

can hope to determine a feasible solution to the original problem opt(x̂) by solving the

subproblems to integer optimality. This process to solve all the MIP subproblems to integer

optimality, however, can be very time consuming and should only be performed when

Mahéo et al.: Unified Branch-and-Benders-Cut
12 Article submitted to INFORMS Journal on Computing; manuscript no. (Please, provide the manuscript number!)

necessary. Thus, we further examine x̂ if it should be included in the set of open solutions.

By combining x̂ with the optimal solutions to the subproblem LP relaxations, we obtain

a lower bound on opt(x̂), lb(x̂). We then solve the scenario subproblems heuristically. If

a heuristic solution has been found for all scenario subproblems, we compute an upper

bound on opt(x̂), ub(x̂), by combining x̂ and the heuristic solutions. This heuristic upper

bound can be used to prune nodes in the branch-and-bound (B&B) tree. Specifically, if

ub(x̂) is better than the incumbent ub∗, it replaces it, and all fractional/integer master

solutions explored with a superior objective function value are eliminated. Note that the

only way to update the incumbent is to discover a heuristic bound ub(x̂) with a lower cost.

This management of the incumbent ensures not pruning master solutions that yield the

global optimum – i.e, x̂ such that opt(x̂) is optimal for P.

The B&B terminates when there is no active node remaining. At the end of the second

phase, we have a set of open master solutions which contains the global optimum, i. e.,

Z contains a master problem solution x̂ such that opt(x̂) is the optimal solution of P .

The second step is a post-processing phase where we rank the open solutions according to

their lower bound lb(x̂), and we solve to integer optimality the associated subproblems to

compute opt(x̂). If opt(x̂) provides a better upper bound than the incumbent, it becomes

the new incumbent. As in the second phase, the incumbent value is used to discard saved

master solutions x̂ such that lb(x̂) is worse than the incumbent. At the end of the post-

processing, the solution with the best combined objective value is the global optimum.

We illustrate the execution of UB&BC on a small numerical example in Appendix A.

3.2. Partial Benders reformulation

It is recognized that standard Benders decomposition often yields a weak computational

performance (Rahmaniani et al. 2017). Indeed, as the subproblems are projected out from

the master problem and replaced with Benders cuts, the algorithm would need to generate

a significant number of Benders cuts to capture the elements present in the subproblems.

Recently, multiple studies have focused on the development of enhanced Benders decom-

position strategies to circumvent this effect and reduce the number of iterations until

convergence.

Crainic et al. (2014, 2016) recently proposed the Partial Benders Decomposition (PBD)

for solving two-stage stochastic programs with continuous second-stage variables, fixed

recourse matrix, and fixed recourse cost. As a result, in this section we omit the scenario

Mahéo et al.: Unified Branch-and-Benders-Cut
Article submitted to INFORMS Journal on Computing; manuscript no. (Please, provide the manuscript number!) 13

index from parameters qomega and Tomega. The idea is to strengthen the master problem with

information relative to the scenario subproblems, which can be done by adding variables

and constraints associated with an artificial scenario ω′ derived from the original scenarios.

In partial Benders reformulation, a valid artificial scenario ω′ must define a convex combi-

nation of the original scenarios, where the weight of each original scenario ω ∈Ω is char-

acterized as αω′
ω ≥ 0,

∑
ω∈Ωα

ω′
ω = 1. Specifically, the artificial scenario yields the strongest

possible bound when αω′
ω = pω, ∀ω ∈ Ω (Crainic et al. 2016). The stochastic parameters

associated with the artificial scenario ω′ are: hω′ =
∑

ω∈Ωα
ω′
ω hω and Wω′ =

∑
ω∈Ωα

ω′
ω W .

By including the second-stage requirement associated with the artificial scenario into the

standard master problem, one can formulate the enhanced master problem as follows:

min cT ·x+
∑
ω∈Ω

pω · zω (Enhanced master problem)

s.t. Ax≥ b (6a)

T ·x+Wω′ · yω′ ≥ hω′ (6b)

qT · yω′ =
∑
ω∈Ω

pω · zω (6c)

f(hω−Tx)≤ 0 ∀f ∈Fω,∀ω ∈Ω (6d)

o(hω−Tx)≤ zω ∀o∈Oω,∀ω ∈Ω (6e)

x∈X, yω′ ≥ 0.

Continuous variables yω′ model the second-stage decisions associated with the artificial

scenario. Constraints (6b) ensure that all master problem solutions are feasible for the

artificial scenario, while constraints (6c) enforce the estimate of the recourse costs to reflect

the cost of second-stage decisions taken for the artificial scenario.

Crainic et al. (2016) demonstrate that the enhanced master problem is a relaxation of

the original problem (DEF) such that, when second-stage variables are continuous, the

classical Benders algorithm based on the enhanced master problem converges to an optimal

solution. Consequently, when solving two-stage SMIPs with discrete recourse, UB&BC

based on a partial Benders reformulation also converges to an optimal solution. Thus, we

can employ two master problem formulations for UB&BC: the standard master problem

and the enhanced master problem. The latter is preferred as it yields stronger bounds, but

it can only be applied for two-stage SMIPs with fixed recourse matrix and fixed recourse

cost.

Mahéo et al.: Unified Branch-and-Benders-Cut
14 Article submitted to INFORMS Journal on Computing; manuscript no. (Please, provide the manuscript number!)

4. Benchmark problems

We consider two different stochastic optimization problems as benchmarks for the UB&BC:

the stochastic server location problem (SSLP) and the stochastic traveling salesman prob-

lem with outsourcing (2TSP). For each problem, we present its deterministic equivalent

formulation as well as its standard Benders reformulation. We also describe the partial

Benders reformulation, as both problems involve fixed recourse matrices and fixed recourse

costs, and the heuristic used to solve the Benders subproblem. Finally, we describe the

characteristics of the test instances.

4.1. Stochastic server location problem

The server location problem (Berman and Mandowsky 1986) is a variant of the facility

location problem with a focus on congestion. It aims to locate a number of servers (facilities)

with fixed capacity so as to maximize service quality. Service quality is determined as a

measure that each client gives to every server. Unlike in the facility location problem, in

the server location problem one can decide to pay a fee for unmet demand instead of having

to open new servers.

The stochastic variant of the server location problem captures uncertainty regarding

customer demands. In this section, we describe the SSLP studied by Ntaimo and Sen

(2005), where first-stage decisions are binary and second-stage decisions can be binary and

continuous. Note that two SSLP variants that allow general integer variables in both stages

are also used as benchmarks for the UB&BC. These variants are described in Appendix

C.

4.1.1. Stochastic mixed-integer program. Let I and J denote the sets for the clients

and the potential server locations, respectively. Installing a server at location j incurs a

cost cj. Only one server can be installed per location, and no more than v servers can

be installed in total. Let Z denote a given set of zones and let Jz be the subset of server

locations that belong to zone z ∈ Z. There is a requirement that at least wz servers be

located in a zone z ∈Z.

All servers have the same resource capacity of D units. For each client i ∈ I and each

server j ∈ J , there is a resource demand of dij units. As a client i ∈ I is assigned to a

server j ∈ J , dij units are used to served the demand and doing so generates qij units of

revenue. Each client must be served by exactly one server. If the total demand assigned to

Mahéo et al.: Unified Branch-and-Benders-Cut
Article submitted to INFORMS Journal on Computing; manuscript no. (Please, provide the manuscript number!) 15

a server j ∈ J exceeds its capacity, an overflow is necessary, incurring a penalty cost of qj0

per unit. Note that revenues qij and qj0 are described as scenario-dependent parameters

in the model proposed by Ntaimo and Sen (2005), but they do not vary from one scenario

to another in the instances they propose. We thus define revenues as scenario-independent

parameters for the sake of simplicity.

Each scenario ω ∈Ω has a probability pω to occur. The stochastic aspects of the problem

are represented by binary parameters hωi that indicate whether or not client i is present in

scenario ω. The decision variables are the following:

• binary variables xj take value 1 if and only if a server is located at site j

• binary variables yωij take value 1 if and only if client i is served by server j in scenario

ω

• continuous variables yωj0 represent the overflow associated with server j in scenario ω

The stochastic server location problem is formulated as follows:

min
∑
j∈J

cj ·xj −
∑
ω∈Ω

pω

(∑
i∈I

∑
j∈J

qij · yωij −
∑
j∈J

qj0 · yωj0

)
(SSLP)

s.t.
∑
j∈J

xj ≤ V (7a)

∑
j∈J

xj ≥wz ∀z ∈Z (7b)

∑
i∈I

dij · yωij − yωj0 ≤D ·xj ∀j ∈ J,∀ω ∈Ω (7c)∑
j∈J

yωij = hωi ∀i∈ I,∀ω ∈Ω (7d)

xj ∈B, yωij ∈B, yj0 ≥ 0.

The objective function aims to minimize the total cost, i. e., the difference between

the total installation cost and the total expected revenue. The constraint (7a) ensures

that no more than V servers are installed. Constraints (7b) ensure that the required

number of servers are installed in the different zones. For each server and each scenario,

constraints (7c) ensure that resource capacities are not exceeded and regulate overflows

accordingly. The requirement that each client present in a scenario is served by exactly

one server is enforced by constraints (7d).

Mahéo et al.: Unified Branch-and-Benders-Cut
16 Article submitted to INFORMS Journal on Computing; manuscript no. (Please, provide the manuscript number!)

4.1.2. Benders decomposition. The deterministic equivalent formulation presented

above can be decomposed into a two-stage stochastic mixed-integer program where the

first stage consists in locating the servers and the second stage consists in assigning clients

to the servers. This yields a valid Benders decomposition where, once the first-stage vari-

ables are fixed, the subproblem decomposes into |Ω| parts, yielding one subproblem per

scenario.

Let Iω be the set of clients that are present in scenario ω ∈Ω. To generate cuts we use

the dual relaxed subproblem associated with the projected y variables. For each scenario

ω ∈ Ω, we define the dual variables uω and vω associated with constraints (7c) and (7d),

respectively. Let the dual constraints (8a) and (8b) correspond to the variables of the form

yωij and yωj0, respectively. Given a first-stage solution x̂ computed by the master problem,

the cut-generating subproblem associated with scenario ω ∈Ω is formulated as follows:

max
∑
i∈Iω

vωi −
∑
j∈J

D · x̂j ·uωj (Sub[ω])

s.t. −dij ·uωj + vωi ≤−qij ∀i∈ Iω, j ∈ J (8a)

uωj ≤ qj0 ∀j ∈ J (8b)

uωj ≥ 0, vωi ∈R.

Then, the master problem is formulated as follows:

min
∑
j∈J

cj ·xj −
∑
ω∈Ω

pω · zω (Standard master)

s.t. (7a)− (7b)∑
j∈J

uωj ·D ·xj −
∑
i∈Iω

vωi ≤ zω (uω, vω)∈Oω,∀ω ∈Ω (9a)

xj ∈B, zω ≥ 0.

The objective function aims to minimize the total installation cost. Constraints (9a)

are the standard Benders optimality cuts added dynamically after solving the scenario

subproblems, with Oω representing the extreme points of the dual subproblem polyhedron

associated with scenario ω. Note that Benders feasibility cuts are not considered. Indeed,

as infinite overflows are allowed, the subproblem is feasible regardless of the first-stage

solution prescribed by the master problem.

Mahéo et al.: Unified Branch-and-Benders-Cut
Article submitted to INFORMS Journal on Computing; manuscript no. (Please, provide the manuscript number!) 17

4.1.3. Partial Benders reformulation. To improve the solutions produced by the mas-

ter problem, we include an artificial scenario ω′ defined as a mean of all the original

scenarios. In the SSLP, scenario-dependent parameters are characterized by the binary

parameters hωi that indicate whether or not client i is present in scenario ω. Therefore, for

each client i, we define hω
′

i as
∑

ω∈Ω pωh
ω
i . Given continuous variables yω

′
ij and yω

′
j0 associated

with the artificial scenario ω′, the enhanced master problem is formulated as follows:

min
∑
j∈J

cj ·xj −
∑
ω∈Ω

pω · zω (Enhanced master)

s.t. (7a)− (7b), (9a) and∑
i∈I

dij · yω
′

ij − yω
′

j0 ≤D ·xj ∀j ∈ J (10a)∑
j∈J

yω
′

ij = hω
′

i ∀i∈ I (10b)

∑
i∈I

∑
j∈J

qij · yω
′

ij −
∑
j∈J

qj0 · yω
′

j0 =
∑
ω∈Ω

pω · zω (10c)

xj ∈B, zω ≥ 0, 0≤ yω′ij ≤ 1, yω
′

j0 ≥ 0.

The standard master problem is enhanced with constraints (10a) to (10c). Con-

straints (10a) and (10b) ensure that all master problem solutions are feasible for the arti-

ficial scenario, while constraint (10c) enforces the estimate of the recourse costs to reflect

the expected revenue associated with the artificial scenario.

4.1.4. Subproblem heuristic. In Ntaimo and Sen (2005), the authors propose an algo-

rithm to solve the SSLP as a whole. However, we are only interested in a heuristic to

solve a deterministic scenario – once servers have been located by the master problem.

Berman and Drezner (2006) propose a heuristic for the case where demand points can also

be servers. The resulting heuristic is described in Appendix B.1 (see Algorithm 2).

4.1.5. Instances. We use the instances introduced by Ntaimo and Sen (2005) which

are available on the SIP test problem library: https://www2.isye.gatech.edu/~sahmed/

siplib/sslp/sslp.html. (See Appendix B.2 for a summary.)

The instances, which are described by the name “SSLP m n S,” vary according to three

parameters: the number of potential server locations (m), the number of client locations

(n), and the number of scenarios (S). Ntaimo and Sen (2005) introduce three instance

classes that vary according to the number of servers and clients considered. These instance

classes are summarized in Table 8.

https://www2.isye.gatech.edu/~sahmed/siplib/sslp/sslp.html
https://www2.isye.gatech.edu/~sahmed/siplib/sslp/sslp.html

Mahéo et al.: Unified Branch-and-Benders-Cut
18 Article submitted to INFORMS Journal on Computing; manuscript no. (Please, provide the manuscript number!)

4.2. Traveling salesman with outsourcing

To demonstrate the efficiency of UB&BC, we also introduce the two-stage stochastic trav-

eling salesman with outsourcing (2TSP). This novel problem is a variant of the Profitable

Tour Problem (PTP, Dell’Amico et al. 1995) with stochastic customers (Zhang et al. 2017).

In itself, the PTP is a variant of the TSP with profits; for more details on these problems,

we refer the interested reader to Feillet et al. (2005).

The 2TSP aims to construct a vehicle route that minimizes the delivery cost from a

depot to a set of customers. Conversely to the PTP, the aim is not to maximize the profits

collected during the tour but rather to balance travel cost and outsourcing fees. The first

stage determines which customers will be served by the vehicle if they happen to make a

request whereas the customers that will not be served by the vehicle will be outsourced

(with an extra fixed cost per customer). In the second stage, some customers request a

service and the recourse decisions consist in determining a route visiting all the selected

customers assigned to the vehicle in the first stage who have requested a service. The

application of this problem arises in the context of repair and maintenance services where

the provider/technician can choose a set of customers to serve using their vehicle and

outsource the service for the remaining customers to an external provider. The challenge

of solving this problem lies in the fact that the routing decisions are scenario-dependent

and are determined in the second stage. Thus, the Benders subproblem corresponds to a

traveling salesman problem associated with a given set of selected customers that made a

request in each scenario.

4.2.1. Stochastic mixed-integer program. We base our 2TSP formulation on the clas-

sic Dantzig-Fulkerson-Johnson (DFJ) model (Dantzig et al. 1954). This formulation has

an exponential number of constraints and the model is solved using a B&C. At the start,

the model only contains the degree constraints (11b) and thus allows sub-tours. At each

integer solution, a procedure checks if the solution contains a sub-tour. If so, a constraint

preventing this sub-tour is added. The first solution which does not contain a sub-tour is

the optimal one.

We recall below the model for the symmetric TSP with SECs. We define:

• N , the set of all nodes;

• dij, the distance between two nodes; and

Mahéo et al.: Unified Branch-and-Benders-Cut
Article submitted to INFORMS Journal on Computing; manuscript no. (Please, provide the manuscript number!) 19

• E(Y) = { (i, j) | i < j, (i, j)∈ Y 2 }, the set of all edges forming a complete graph given

a set of nodes Y .

We define the TSP with outsourcing as the problem of determining (i) the set of cus-

tomers to be served by the vehicle in the first stage, and (ii) the route to serve the selected

customers who made a request in the second stage so as to minimize the total expected

routing and outsourcing cost to serve (stochastic) customer requests. We consider a set of

scenarios ω ∈ Ω, each with a probability pω of occurring. In each scenario, we use binary

variables hωi to represent whether customer i∈N has a request. The penalty for not visit-

ing a customer i∈N is bi. In addition, we assume, without loss of generality, that at least

C customers must be served by the vehicle.

In the deterministic equivalent formulation below (2TSP), we use the following decision

variables:

• xi, binary variable taking value 1 iff customer i is visited by the vehicle;

• yωij, binary variable taking value 1 iff edge (i, j) is used in scenario ω.

This leads to the following formulation:

min
∑
ω∈Ω

pω

 ∑
i,j∈E(N)

cij · yωij

−∑
i∈N

(1−xi)bi (2TSP)

s.t.
∑
i∈N

xi ≥C (11a)∑
j∈N

yωij = 2 ·xi ·hωi ∀i∈N (11b)

∑
i,j∈E(Sω)

yωij ≤ |Sω| − 1 Sω ⊆Nω, |Sω| ≥ 2,∀ω ∈Ω (11c)

xi ∈B, yωij ∈B.

The constraint (11a) ensures that at least C customers are visited. Constraints (11b) are

the degree constraints. Constraints (11c) are the sub-tour elimination constraints.

4.2.2. Benders decomposition. The deterministic equivalent formulation presented

above can be decomposed into a first stage, which consists in selecting the customers

to include in the tour while paying outsourcing fees for required customers that are not

selected, and a second stage which aims to construct tours between the selected customers

that have a request. This yields a valid Benders decomposition where each scenario forms

Mahéo et al.: Unified Branch-and-Benders-Cut
20 Article submitted to INFORMS Journal on Computing; manuscript no. (Please, provide the manuscript number!)

an independent subproblem. Hence, each subproblem is an instance of a TSP based on the

nodes which have a request in this scenario.

To generate cuts, we use the dual subproblem based on said TSP, where for each sce-

nario ω ∈ Ω, we define uω and vω as the dual variables associated with constraints (11b)

and (11c), respectively. Given a first-stage solution x̂ computed by the master problem,

the subproblem associated with scenario ω ∈Ω is formulated as follows:

max
∑
i∈N

2 · x̂i ·hωi +
∑

Sω⊂Nω

|Sω |≥2

(1− |Sω|)vωs (Sub[ω])

s.t. uωi −
∑

{ s∈Sω |i,j∈s}

vωs ≤ cij ∀i, j ∈E(N) (12a)

uωi ∈R, vωs ≥ 0.

We solve the subproblem in its primal form, which is an LP relaxation of a TSP, using

the standard cutting-plane technique for the TSP (Dantzig et al. 1954).

The master problem is formulated as follows:

min
∑
ω∈Ω

pω · zω−
∑
i∈N

(1−xi)bi (Standard master)

s.t. (11a)∑
i∈N

2 ·uωi ·xi ·hωi +
∑

Sω⊂Nω

|Sω |≥2

vωs (|Sω| − 1)≤ zω ∀(uω, vω)∈Oω,∀ω ∈Ω (13a)

xi ∈B, zω ≥ 0.

The objective function aims to minimize the penalties for not including customers in the

tour. Constraints (13a) are the standard Benders optimality cuts added dynamically after

solving the scenario subproblems, with Oω representing the extreme points of the dual

subproblem polyhedron associated with scenario ω. Again, Benders feasibility cuts are not

considered as the subproblem is feasible regardless of the first-stage solutions prescribed

by the master problem.

4.2.3. Partial Benders reformulation. We improve the solutions produced by the mas-

ter problem by including an artificial scenario ω′ defined as the mean of all the original

scenarios. Scenario-dependent parameters are characterized by the binary parameters hωi

Mahéo et al.: Unified Branch-and-Benders-Cut
Article submitted to INFORMS Journal on Computing; manuscript no. (Please, provide the manuscript number!) 21

that indicate whether or not customer i has a request in scenario ω. Therefore, for each

customer i, we define hω
′

i as
∑

ω∈Ω pωh
ω
i . Given continuous variables yω

′
ij associated with

the artificial scenario ω′, the enhanced master problem is formulated as follows:

min
∑
ω∈Ω

pω · zω−
∑
i∈N

(1−xi)bi (Enhanced master)

s.t. (11a)− (13a)∑
j∈N

yω
′

ij = 2 ·xi ·hω
′

i ∀i∈N (14a)

∑
i,j∈E

cij · yω
′

ij =
∑
ω∈Ω

pω · zω (14b)

xi ∈B, 0≤ yω′ij ≤ 1, zω ≥ 0.

The standard master problem is enhanced with constraints (14a) ensuring that all master

problem solutions are feasible for the artificial scenario and constraints (14b) enforcing the

estimate of the recourse costs to reflect the cost of the tour computed for the artificial

scenario.

4.2.4. Subproblem heuristics. Considering how hard optimal solutions are to obtain,

we can make use of well-known TSP heuristic in the literature to quickly determine solu-

tions of good quality. We decided on four heuristics to get upper bounds, all of them are

local search heuristics, which means they improve a given solution until no improvement

can be found. Obviously, more sophisticated TSP heuristics could be used in this stage

as well. However, we opted to use these heuristics as they are simple to implement and

demonstrate the efficiency and flexibility of our UB&BC approach.

• Nearest neighbor starts at a random customer and, at every step, chooses to visit the

closest unvisited customer. This heuristic gives poor results in the general case as it does

not consider the layout of the tour at all.

• 2-opt looks for two edges which, if swapped, would yield an improvement in the tour

and repeats this process until no further improvement can be found. This heuristic is one

of the most commonly used as it has a simple implementation and fairly low complexity

of O(n2).

• 3-opt is similar to 2-opt, but it tries to find three edges leading to an improvement

instead of two. In this case, the search becomes quite expensive with a complexity of O(n3).

Mahéo et al.: Unified Branch-and-Benders-Cut
22 Article submitted to INFORMS Journal on Computing; manuscript no. (Please, provide the manuscript number!)

• LKH is our implementation of the Lin-Kernighan heuristic (Lin and Kernighan 1973),

using enhancements proposed in Helsgaun (2000) – implementation details can be found

in Appendix D.2.1. This heuristic is considered the state of the art and has a complexity

of O(n2.2).

4.2.5. Instances. We define our instances using the classic TSPLib (Reinelt 1991)

instances which can be found at : http://elib.zib.de/pub/mp-testdata/tsp/tsplib/

tsp/index.html.The scenarios are generated using the following parameters:

• Number of scenarios Between 25 and 500, with an increment of 50.

• Customer requests Customers have a random uniform chance (80%) of appearing in

each scenario. We also make sure not to have duplicate scenarios.

• Unserved requests costs We define the costs incurred by not visiting a customer with

a request as the distance between the customer and the depot: bi = d0,i,∀i∈N .

5. Computational study

In this section, we first compare the two versions of our method, UB&BC Base and

UB&BC Enhanced (i. e., based on the standard and the partial Benders decomposition,

respectively), to the state-of-the-art approaches for solving two-stage SMIPs with discrete

recourse. Performance indicators are obtained by solving different instances of the stochas-

tic server location problem (SSLP), which is acknowledged as the current benchmark to

compare algorithms for two-stage SMIPs with discrete recourse (e. g., Ntaimo and Sen

2005, Guo et al. 2015, Gade et al. 2014, Atakan and Sen 2018, Qi and Sen 2017). We next

perform an extensive series of experiments on instances of the stochastic traveling salesman

problem with outsourcing (2TSP) to gain insights into how the different components of

UB&BC play a role in its performance.

Our algorithm is coded in Python 3.5 and its implementation is available in the GitLab

project: https://gitlab.com/Soha/brandec and it is executed on the Calcul Québec

computing cluster.1 The experiments are conducted on an Intel Xeon X5650 processor with

a 2.67GHz CPU on a single thread and with 12 GB of RAM. Linear and integer programs

are solved using CPLEX v12.7.

1 Complete specifications available on calculquebec.ca.

http://elib.zib.de/pub/mp-testdata/tsp/tsplib/tsp/index.html
http://elib.zib.de/pub/mp-testdata/tsp/tsplib/tsp/index.html
https://gitlab.com/Soha/brandec
https://wiki.calculquebec.ca/w/Table_summarizing_properties_of_Calcul_Qu%25C3%25A9bec_servers

Mahéo et al.: Unified Branch-and-Benders-Cut
Article submitted to INFORMS Journal on Computing; manuscript no. (Please, provide the manuscript number!) 23

5.1. Comparison with state-of-the-art approaches for two-stage stochastic integer
programs

Algorithms for two-stage SMIPs with discrete recourse are often benchmarked on instances

of the SSLP, especially because these instances involve a significant number of discrete

variables (Ntaimo and Sen 2005). Three SSLP variants are studied in the literature, with

each variant being different from another regarding the type of variables it involves in the

first stage and the second stage. We sort these SSLP variants by ascending difficulty. In

the 1st variant, the first stage involves binary variables while the second stage involves

binary/continuous variables. In the 2nd variant, the first stage involves binary variables

while the second stage involves binary/integer variables. In the 3rd variant, also referred

to as the stochastic server location and sizing (SSLS), both stages solely involve general

integer variables. These SSLP variants are summarized in Table 2.

1st Stage 2nd Stage

R B Z R B Z

1st variant ? ? ?

2nd variant ? ? ?

3rd variant ? ?

Table 2 Type of variables involved in the different SSLP variants

Note that the 3rd variant requires a modified heuristic for solving the subproblem. We

present our modified allocation heuristic in Appendix C.3.

We compare UB&BC with five state-of-the-art solution approaches:

• the disjunctive decomposition algorithm (D2) proposed by Sen and Higle (2005);

• the integrated progressive hedging dual decomposition algorithm (PH-DD) proposed

by Guo et al. (2015);

• the progressive hedging branch-and-bound (PH-B&B) proposed by Atakan and Sen

(2018);

• the decomposition algorithm with parametric Gomory cuts (Gomory) proposed by

Gade et al. (2014);

• the ancestral Benders’ cutting plane algorithm (ABC) proposed by Qi and Sen (2017).

Mahéo et al.: Unified Branch-and-Benders-Cut
24 Article submitted to INFORMS Journal on Computing; manuscript no. (Please, provide the manuscript number!)

The first three approaches are benchmarked on the 1st SSLP variant. The fourth and the

fifth approach are benchmarked on the 2nd and the 3rd SSLP variants, respectively.

To provide a fair comparison between our results and those presented in the different

articles, we scale computation times according to the type of processor employed. To do so,

we use the PassMark single thread rating2 as a performance indicator of the processors and

we determine scaling coefficient values accordingly. In Table 3, for each article we report the

type of processor employed, the associated single thread rating, and the scaling coefficient.

Note that we have not been able to provide scaling coefficients for the two first benchmark

approaches. Indeed, the single thread rating of the processor used by Sen and Higle (2005)

is not available and Guo et al. (2015) did not specify the model of their processor. Also,

as Qi and Sen (2017) do not specify the exact model of their Intel CoreQuad processor,

we retained the lowest single thread rating among all Intel CoreQuad processors.

Method SSLP variant Processor Single thread rating Scaling coefficient

D2 1 UltraSPARC-III+ (900MHz) - -
PH-DD 1 Unknown (3.1GHz) - -

PH-B&B 1 Intel i7-3770S (3.1GHz) 2,006 1.52
Gomory 2 Intel CoreQuad (2.66GHz) 1,079 0.82

ABC 3 Intel i7-3770K (3.5GHz) 2,066 1.57

UB&BC 1,2,3 Intel Xeon X5650 (2.67GHz) 1,318 1.00

Table 3 CPU characteristics

5.1.1. Comparison with D2, PH-DD, and PH-B&B (1st SSLP variant). We compare

the two versions of UB&BC to the disjunctive decomposition algorithm (D2), the integrated

progressive hedging dual decomposition algorithm (PH-DD) and the progressive hedging

branch-and-bound (PH-B&B), which are all benchmarked on the 1st SSLP variant. In

Table 4, we present the computation time required by each version of UB&BC to reach

termination. For the state-of-the-art approaches, we report computation times from the

original article in column Time o. When the single thread performance is available, the

scaled computation times, i. e., computation times divided by the corresponding scaling

coefficient values, are reported in column Time s. Note that a dash ‘-’ indicates that the

considered instance was not tested in the corresponding article.

2 Data available at https://www.cpubenchmark.net/singleThread.html

https://www.cpubenchmark.net/singleThread.html

Mahéo et al.: Unified Branch-and-Benders-Cut
Article submitted to INFORMS Journal on Computing; manuscript no. (Please, provide the manuscript number!) 25

UB&BC

Base Enhanced D2 PH-DD PH-B&B

Instance Time (s) Time (s) Time o (s) Time o (s) Time o (s) Time s (s)

SSLP 5 25 50 0.72 0.54 0.53 - 0.50 0.76
SSLP 5 25 100 1.38 1.06 1.06 - 1.10 1.67
SSLP 10 50 50 32.01 28.14 239.95 74.00 8.70 13.24
SSLP 10 50 100 61.88 54.10 480.46 175.00 18.60 28.31
SSLP 10 50 500 254.41 205.62 1,902.20 1,033.00 80.80 122.98
SSLP 10 50 1000 589.62 437.15 5,410.10 - 163.60 249.00
SSLP 10 50 2000 1161.98 818.72 9,055.29 - 309.60 471.21
SSLP 15 45 5 5.38 1.81 110.34 - 1.40 2.13
SSLP 15 45 10 34.19 23.01 1,494.89 45.00 2.40 3.65
SSLP 15 45 15 156.07 149.74 7,210.63 123.00 3.20 4.87

Table 4 Performance on the 1st SSLP variant

As expected, using the partial Benders reformulation is beneficial as, overall, UB&BC

Enhanced converges 1.44 times faster than UB&BC Base. For most instances, the compu-

tation times obtained with the two versions of UB&BC are lower than those reported for

the D2 and the PH-DD algorithms. However, as single thread performances are not avail-

able for these state-of-the-art approaches, we cannot provide a fair comparison. Because

the speed (900MHz) reported in Sen and Higle (2005) is largely lower than ours (2.67GHz),

it is impossible to infer if UB&BC outperforms D2. On the other hand, due to the speed

(3.1GHz) reported in Guo et al. (2015), we assume that their processor is competitive with

ours, and thus that both versions of UB&BC actually outperform PH-DD.

Both versions of UB&BC are competitive with PH-B&B on the instances that involve 5

servers. This is not the case as the number of servers increases. Overall, PH-B&B is 1.84

times faster than UB&BC Enhanced on the instances that involves 10 servers, and 12.63

times faster on the instances that involves 15 servers. Nevertheless, it should be noted that

the PH-B&B algorithm only accommodates binary variables in the first stage and cannot

tackle all the 3rd SSLP variant.

5.1.2. Comparison with Gomory (2nd SSLP variant). We solve instances of the 2nd

SSLP variant and we compare the two versions of UB&BC to the decomposition algorithm

with parametric Gomory cuts (Gomory). For each instance, the best computation time at

termination is indicated in bold.

Again, UB&BC Enhanced outperforms UB&BC Base as it converges 1.38 times faster.

Both versions of UB&BC are less efficient than Gomory on the instances that involve 5

servers. Nevertheless, these instances are relatively simple as they are all solved within 2

Mahéo et al.: Unified Branch-and-Benders-Cut
26 Article submitted to INFORMS Journal on Computing; manuscript no. (Please, provide the manuscript number!)

UB&BC

Base Enhanced Gomory

Instance Time (s) Time (s) Time o (s) Time s (s)

SSLP 5 25 50 1.41 0.54 0.18 0.15
SSLP 5 25 100 0.72 1.07 0.22 0.18
SSLP 5 50 50 29.59 25.98 109.20 89.48
SSLP 5 50 100 51.76 44.61 218.42 178.98
SSLP 5 50 500 260.14 195.55 740.38 606.68
SSLP 5 50 1000 540.47 359.57 1,615.42 1,323.71
SSLP 5 50 2000 1100.17 759.74 2,729.61 2,236.71

Table 5 Performance on the 2nd SSLP variant

seconds by the different methods. On the other hand, both versions of UB&BC terminate

faster than Gomory on all the instances with 10 servers. For these instances, UB&BC

Enhanced converges 3.37 times faster than Gomory overall, while UB&BC Base converges

2.66 times faster than Gomory overall. Again, it should be noted that Gomory is not as

generic as our approach as it does not accommodate general integer variables in the first

stage.

5.1.3. Comparison with ABC (3rd SSLP variant). We solve instances of the 3rd SSLP

variant and we compare two versions of UB&BC to the ancestral Benders’ cutting plane

algorithm (ABC). For each instance, the best computation time at termination is indicated

in bold. We indicate timeouts (longer than 3,600s) with ‘t/o’.

UB&BC UB&BC

Base Enhanced ABC Base Enhanced ABC

Instance SSLS Time (s) Time (s) Time o (s) Time s (s) Instance SSLS Time (s) Time (s) Time o (s) Time s (s)

(2×5) (5×5) 50 0.22 0.15 0.30 0.47 (3×5) (10×5) 500 6.69 7.26 27.15 42.56
(2×5) (5×5) 100 0.31 0.29 0.38 0.60 (3×5) (15×5) 50 0.98 1.16 191.92 300.84
(2×5) (5×5) 500 2.12 3.69 3.58 5.61 (3×5) (15×5) 100 1.74 4.02 19.56 30.66
(2×5) (10×5) 50 0.39 0.52 0.52 0.82 (3×5) (15×5) 500 7.39 12.55 1069.92 1,677.13
(2×5) (10×5) 100 1.10 1.23 4.84 7.59 (4×5) (5×5) 50 0.40 0.54 1.59 2.49
(2×5) (10×5) 500 2.95 4.94 4.43 6.94 (4×5) (5×5) 100 0.55 1.23 3.36 5.27
(2×5) (15×5) 50 0.89 0.99 4.26 6.68 (4×5) (5×5) 500 3.99 5.84 20.99 32.90
(2×5) (15×5) 100 0.70 1.00 1.64 2.57 (4×5) (10×5) 50 1.11 2.11 3.60 5.64
(2×5) (15×5) 500 6.35 8.13 51.28 80.38 (4×5) (10×5) 100 2.77 4.76 261.89 410.52
(3×5) (5×5) 50 0.22 0.18 0.59 0.92 (4×5) (10×5) 500 13.10 31.52 745.61 1,168.76
(3×5) (5×5) 100 0.54 0.58 1.23 1.93 (4×5) (15×5) 50 3.00 5.70 1653.67 2,592.17
(3×5) (5×5) 500 3.45 4.56 7.09 11.11 (4×5) (15×5) 100 3.14 5.40 t/o 5,643.10
(3×5) (10×5) 50 3.00 3.70 4.68 7.34 (4×5) (15×5) 500 84.09 100.64 t/o 5,643.10
(3×5) (10×5) 100 2.19 2.42 158.61 248.63

Table 6 Performance on the 3rd SSLP variant

We observe that using the partial Benders reformulation is not beneficial in that case.

Indeed, UB&BC Base outperforms UB&BC Enhanced on 24 out of the 27 instances, and

Mahéo et al.: Unified Branch-and-Benders-Cut
Article submitted to INFORMS Journal on Computing; manuscript no. (Please, provide the manuscript number!) 27

it converges 1.44 faster overall. When analyzing the results, we observe that the first phase

of UB&BC (i. e., the B&B) is twice longer as the partial Benders reformulation is applied.

We conclude that strengthening the bounds produced by the master problem is at the

cost of an extra computational effort that is too significant to improve convergence speed.

Nevertheless, we observe that both versions of UB&BC are strictly more efficient than the

ABC algorithm. Both versions of UB&BC close the two open instances and they always

converge faster than ABC. The total computation time required by UB&BC Base to solve

all the instances is of 153.38 seconds. On the other hand, 8 instances cannot be solved

by ABC within this amount of time. Overall, both versions of UB&BC are more than 80

times faster than ABC.

5.2. Performance of UB&BC on the 2TSP

We perform an extensive series of experiments on the instances of the stochastic traveling

salesman problem with outsourcing (2TSP) described in Section 4.2.5. Figure 2 shows the

performance of the two versions of UB&BC on different instances of the TSPLib, based on

their size. The size of the instance is defined as the number of variables in the model, used

as a proxy for difficulty. We plot the results of using the UB&BC with its best perform-

ing heuristic (LKH, cf. Figure 7) against the DEF MIP formulation solved with CPLEX

implementation of branch-and-cut. Note that we use further algorithmic refinements in

UB&BC Enhanced, namely: merging procedure (Appendix D.2.2) and subproblem warm-

up (Appendix D.2.3).

The results in Figure 2 and Table 7 clearly show the superiority of the UB&BC

over CPLEX. When solving the DEF, CPLEX only manages to return results for small

instances, and these results are all timeouts (cluster near the 21,000s mark).

One of the main goals of the UB&BC is to reduce the number of open solutions we have

to solve to integer optimality. Figure 3 shows the number of solutions explored during the

master B&C and the number of MIPs solved in the post-processing phase. Our strategy

proves to always be beneficial: there is not a single instance with as many MIPs solved as

solutions explored. We also have a number of instances where the first solution solved in

the post-processing phase allows us to prune all the others.

To further analyze the performance of UB&BC, we study the impact of using a partial

Benders decomposition as well as the impact of the subproblem heuristic in Appendices

D.1 and D.2, respectively.

Mahéo et al.: Unified Branch-and-Benders-Cut
28 Article submitted to INFORMS Journal on Computing; manuscript no. (Please, provide the manuscript number!)

5 478 952 1425

variables (x1000)

0

4200

8400

12600

16800

21000

T
o
ta
l
ti
m
e
(s
)

UB&BC Enhanced

UB&BC Base

MIP

Figure 2 Solving time per (estimated) size of 2TSP

instances using a generic MIP solver,

UB&BC Base or UB&BC Enhanced.

b
u
rm

a
1
4

g
r1
7

g
r2
1

g
r2
4

fr
i2
6

b
ay
g
2
9

b
ay
s2
9

d
a
n
tz
ig
4
2

sw
is
s4
2

g
r4
8

h
k
4
8

ei
l5
1

b
er
li
n
5
2

ei
l7
6

ra
t9
9

Master solutions Solved MIPs

Figure 3 Number of master solutions explored and

and the number of MIPs solved in the post-

processing phase when using 100 scenarios.

UB&BC UB&BC

Instance (/10) MIP Base Enhanced Instance (/10) MIP Base Enhanced

burma14 6 10 10 swiss42 0 0 10
ulysses16 7 10 10 hk48 0 0 8
gr17 10 10 10 att48 0 0 0
gr21 3 10 10 gr48 0 0 9
ulysses22 7 0 0 eil51 0 0 10
gr24 6 10 10 berlin52 0 0 5
fri26 1 10 10 brazil58 0 0 0
bays29 0 4 10 st70 0 0 0
bayg29 0 5 10 eil76 0 0 10
dantzig42 0 0 10 pr76 0 0 0

Table 7 Number of instances of 2TSP solved using a MIP or the UB&BC approach.

6. Conclusions

In this paper, we have presented a new framework for solving two-stage stochastic

mixed-integer programs. Our Unified Branch-and-Benders-Cut (UB&BC) tackles two-stage

stochastic mixed-integer programs with uncertainty in all the recourse parameters, and

it accommodates general mixed-integer variables in both the first and the second stage.

Mahéo et al.: Unified Branch-and-Benders-Cut
Article submitted to INFORMS Journal on Computing; manuscript no. (Please, provide the manuscript number!) 29

The UB&BC relies on both linear programming duality and on a heuristic global bound-

ing procedure to determine a set of open master solutions. In a post-processing phase,

the scenario subproblems associated with these open solutions are solved to integer opti-

mality, enabling us to determine the global optimum. In the case of two-stage stochastic

programs with fixed recourse matrix and fixed recourse cost, it is possible to strengthen

the master problem with a partial Benders reformulation and improve the convergence of

our approach.

Through an extensive series of experiments carried out on instances of the stochastic

server location problem (SSLP), we have computationally demonstrated that both ver-

sions of UB&BC, with and without partial Benders reformulation, are competitive against

the state-of-the-art solution algorithms for two-stage SMIPs with discrete recourse. In

addition, we have performed a computational study on the two-stage stochastic traveling

salesman with outsourcing (2TSP) to assess the efficiency of each component of UB&BC.

In particular, we have shown that the partial decomposition creates a virtuous circle of

improvement. With it, the algorithm explores fewer integer master solutions during the

branch-and-Benders-cut, and thus reduces the computational burden of the post-processing

phase. We also have highlighted how using an efficient bounding heuristic can significantly

improve the algorithm’s speed of convergence.

Finally, the advantages of our framework are simplicity and flexibility. We believe that

this straightforward approach is a great candidate for building more advanced algorithms

and tackle larger, more difficult problems. There are computational enhancements which

we have not explored. For example, we only consider single-threaded execution; modern

computing relies on multicore infrastructures and we could solve either the B&C or the

post-processing phase in parallel. Another area of interest is to exploit the structure of sce-

narios, not only from a computational point of view but also to inform the master problem.

Other possible avenues include: advanced branching schemes, improved cut generation, or

constraint propagation.

Acknowledgments

Computations were made on the supercomputer “Briarée” from Université de Montréal, managed by Calcul

Québec and Compute Canada. The operation of this supercomputer is funded by the Canada Foundation

for Innovation (CFI), the Ministère de l’économie, de la science et de l’innovation du Québec (MESI) and

the Fonds de recherche du Québec – Nature et technologies (FRQ-NT).

Mahéo et al.: Unified Branch-and-Benders-Cut
30 Article submitted to INFORMS Journal on Computing; manuscript no. (Please, provide the manuscript number!)

References

Ahmed S, Tawarmalani M, Sahinidis NV (2004) A finite branch-and-bound algorithm for two-stage stochastic

integer programs. Mathematical Programming 100(2):355–377.

Atakan S, Sen S (2018) A progressive hedging based branch-and-bound algorithm for mixed-integer stochastic

programs. Computational Management Science 15(3-4):501–540.

Benders JF (1962) Partitioning procedures for solving mixed variables programming problems. Numerische

Mathematik 4:238–252.

Berman O, Drezner Z (2006) Location of congested capacitated facilities with distance-sensitive demand.

IIE Transactions 38(3):213–221.

Berman O, Mandowsky RR (1986) Location-allocation on congested networks. European Journal of Opera-

tional Research 26(2):238–250.

Birge JR, Louveaux FV (1997) Introduction to stochastic programming (Springer Science & Business Media).

Carøe CC, Schultz R (1999) Dual decomposition in stochastic integer programming. Operations Research

Letters 24(1-2):37–45.

Carøe CC, Tind J (1998) L-shaped decomposition of two-stage stochastic programs with integer recourse.

Mathematical Programming 83(1-3):451–464.

Crainic TG, Hewitt M, Rei W (2014) Partial decomposition strategies for two-stage stochastic inte-

ger programs. Publication CIRRELT-2014-13, Centre interuniversitaire de recherche sur les réseaux

d’entreprise, la logistique et le transport, Université de Montréal, Montréal QC, Canada .

Crainic TG, Rei W, Hewitt M, Maggioni F (2016) Partial Benders decomposition strategies for two-stage

stochastic integer programs. Publication CIRRELT-2016-37, Centre interuniversitaire de recherche sur

les réseaux d’entreprise, la logistique et le transport, Université de Montréal, Montréal QC, Canada .

Dantzig G, Fulkerson R, Johnson S (1954) Solution of a large-scale traveling-salesman problem. Journal of

the Operations Research Society of America 2(4):393–410.

De Camargo RS, de Miranda Jr G, Ferreira RP (2011) A hybrid outer-approximation/Benders decomposition

algorithm for the single allocation hub location problem under congestion. Operations Research Letters

39(5):329–337.

Dell’Amico M, Maffioli F, Varbrand P (1995) On prize-collecting tours and the asymmetric travelling

salesman problem. International Transactions in Operational Research 2(3):297–308, URL http:

//doi.wiley.com/10.1111/j.1475-3995.1995.tb00023.x.

Farkas J (1902) Theorie der einfachen Ungleichungen. Journal für die reine und angewandte Mathematik

124:1–27.

Feillet D, Dejax P, Gendreau M (2005) Traveling salesman problems with profits. Transportation Science

39(2):188–205.

http://doi.wiley.com/10.1111/j.1475-3995.1995.tb00023.x
http://doi.wiley.com/10.1111/j.1475-3995.1995.tb00023.x

Mahéo et al.: Unified Branch-and-Benders-Cut
Article submitted to INFORMS Journal on Computing; manuscript no. (Please, provide the manuscript number!) 31

Fortz B, Poss M (2009) An improved Benders decomposition applied to a multi-layer network design problem.

Operations Research Letters 37(5):359–364.

Gade D, Küçükyavuz S, Sen S (2014) Decomposition algorithms with parametric Gomory cuts for two-stage

stochastic integer programs. Mathematical Programming 144(1-2):39–64.

Gendron B, Scutellà MG, Garroppo RG, Nencioni G, Tavanti L (2016) A branch-and-Benders-cut method for

nonlinear power design in green wireless local area networks. European Journal of Operational Research

255(1):151–162.

Guo G, Hackebeil G, Ryan SM, Watson JP, Woodruff DL (2015) Integration of progressive hedging and dual

decomposition in stochastic integer programs. Operations Research Letters 43(3):311–316.

Helsgaun K (2000) An effective implementation of the Lin–Kernighan traveling salesman heuristic. European

Journal of Operational Research 126(1):106–130.

Kong N, Schaefer AJ, Hunsaker B (2006) Two-stage integer programs with stochastic right-hand sides: A

superadditive dual approach. Mathematical Programming 108(2-3):275–296.

Küçükyavuz S, Sen S (2017) An introduction to two-stage stochastic mixed-integer programming. Leading

Developments from INFORMS Communities, 1–27 (INFORMS).

Laporte G, Louveaux FV (1993) The integer L-shaped method for stochastic integer programs with complete

recourse. Operations Research Letters 13(3):133–142.

Lin S, Kernighan BW (1973) An effective heuristic algorithm for the traveling-salesman problem. Operations

Research 21(2):498–516.

Ntaimo L (2010) Disjunctive decomposition for two-stage stochastic mixed-binary programs with random

recourse. Operations Research 58(1):229–243.

Ntaimo L, Sen S (2005) The million-variable “march” for stochastic combinatorial optimization. Journal of

Global Optimization 32(3):385–400.

Qi Y, Sen S (2017) The ancestral Benders’ cutting plane algorithm with multi-term disjunctions for mixed-

integer recourse decisions in stochastic programming. Mathematical Programming 161(1-2):193–235.

Rahmaniani R, Crainic TG, Gendreau M, Rei W (2017) The Benders decomposition algorithm: A literature

review. European Journal of Operational Research 259(3):801–817.

Ralphs TK, Hassanzadeh A (2014) A generalization of Benders’ algorithm for two-stage stochastic optimiza-

tion problems with mixed integer recourse. Technical Report 14T-005, Department of Industrial and

Systems Engineering, Lehigh University .

Reinelt G (1991) Tsplib—A traveling salesman problem library. ORSA Journal on Computing 3(4):376–384.

Schultz R, Stougie L, Van Der Vlerk MH (1998) Solving stochastic programs with integer recourse by

enumeration: A framework using Gröbner basis. Mathematical Programming 83(1-3):229–252.

Mahéo et al.: Unified Branch-and-Benders-Cut
32 Article submitted to INFORMS Journal on Computing; manuscript no. (Please, provide the manuscript number!)

Sen S, Higle JL (2005) The C 3 theorem and a D 2 algorithm for large scale stochastic mixed-integer

programming: Set convexification. Mathematical Programming 104(1):1–20.

Sen S, Sherali HD (2006) Decomposition with branch-and-cut approaches for two-stage stochastic mixed-

integer programming. Mathematical Programming 106(2):203–223.

Sherali HD, Adams WP (1999) A Reformulation-Linearization technique for solving discrete and continuous

nnconvex problems. Kluwer Academic Publishers .

Sherali HD, Fraticelli BM (2002) A modification of Benders’ decomposition algorithm for discrete sub-

problems: An approach for stochastic programs with integer recourse. Journal of Global Optimization

22(1-4):319–342.

Sherali HD, Zhu X (2006) On solving discrete two-stage stochastic programs having mixed-integer first-and

second-stage variables. Mathematical Programming 108(2-3):597–616.

Trapp AC, Prokopyev OA, Schaefer AJ (2013) On a level-set characterization of the value function of an

integer program and its application to stochastic programming. Operations Research 61(2):498–511.

Van Slyke RM, Wets R (1969) L-shaped linear programs with applications to optimal control and stochastic

programming. SIAM Journal on Applied Mathematics 17(4):638–663.

Wolsey LA (1998) Integer Programming, volume 52 (John Wiley & Sons).

Zhang M, Wang J, Liu H (2017) The probabilistic profitable tour problem. International Journal of Enter-

prise Information Systems 13(3):51–64.

Mahéo et al.: Unified Branch-and-Benders-Cut
Article submitted to INFORMS Journal on Computing; manuscript no. (Please, provide the manuscript number!) 33

Appendix A: Toy problem

We use a toy problem with four variables to illustrate how the UB&BC proceeds. For the sake of simplicity,

we consider a problem with a single subproblem. Consider the following integer program:

min 6x1 + 10x2 + y1 + 2y2 (Toy)

s.t. −15x1− 22x2 + 5y1 + 8y2 ≤ 0 (15a)

y1 + y2 ≥ 1.5 (15b)

x∈B, y ∈ {0,1,2}.

If we relax integrality and project out variables y, we obtain the following LP relaxation for the subproblem:

q(x̂) = min y1 + 2y2 (Toy Sub)

s.t. 5y1 + 8y2 ≤ 15x̂1 + 22x̂2 (λ1)

y1 + y2 ≥ 1.5 (λ2)

y1 ≤ 2 (λ3)

y2 ≤ 2 (λ4)

y≥ 0.

We denote by λi the dual variables associated with the constraints of the model above. Let O be the set

of extreme points and F the set of extreme rays associated with the dual of (Toy Sub). If we denote by q

the variable representing the lower estimator of the subproblem, we obtain the following master problem:

min 6x1 + 10x2 + q (Toy Master)

s.t. −λ1(15x1 + 22x2) + 1.5λ2− 2(λ3 +λ4)≤ q ∀λi ∈O (17a)

−λ1(15x1 + 22x2) + 1.5λ2− 2(λ3 +λ4)≤ 0 ∀λi ∈F (17b)

x∈B.

As a heuristic for the subproblem, we will round the value of the variables in a solution to their next

integer: h(y) = dy1e+ 2dy2e.

A.1. Master Branch-and-Cut

At the start, we have ub∗ =∞ and lb∗ = 0, and all x variables relaxed to their continuous domain.

1. The first integer master solution we find when solving (Toy Master) without any constraints is X1 =

{0,0} with value 0. Setting X1 in (Toy Sub) results in an infeasible problem. Using a Farkas certificate

(Farkas 1902), we find the extreme ray (1,5,0,0) and thus add the following feasibility cut to the master

problem:

− 15x1− 22x2 + 7.5≤ 0 (18)

Mahéo et al.: Unified Branch-and-Benders-Cut
34 Article submitted to INFORMS Journal on Computing; manuscript no. (Please, provide the manuscript number!)

2. Augmented by the new constraint (18), the next master solution becomes X2 = {0,1} with value 10.

We pass the new solution to the subproblem, and this results in a feasible solution Y = {1.5,0}. Thus we

can update the lower bound to lb∗ = 11.5 and the upper bound to ub∗ = 12.

We add the following optimality cut from the dual values of (Toy Sub):

1.5≤ q (19)

3. Now having two Benders cuts, the search of the master’s solution space proceeds to X3 = {1,0} with

value 6. Again, we find Y = {1.5,0} as solution to the subproblem. We can add the same optimality cut

again, or just skip it. However, we can update the bounds to lb∗ = 7.5 and ub∗ = 8.

4. The search continues until the next potential master solution X4 = {1,1} with value 16. At this node,

we find that the master’s solution value already exceeds our upper bound. We can thus prune the tree rooted

at this node.

0,0

lb∗ = 0−ub∗ =∞

X1

0,1

lb∗ = 11.5−ub∗ = 12

X2

1,0

lb∗ = 7.5−ub∗ = 8

X3

1,1

z = 16>ub∗

X4
Add (18) Add (19)

Figure 4 Example search when using UB&BC with problem (Toy).

A.2. Post-processing

After the B&B of the master problem finishes, we have a set of explored solutions with their upper and lower

bounds saved. We reintroduce the integrality constraints and solve the resulting MIPs to obtain the optimal

integer value.

1. We start with the solution found at node 3 as it has the lowest upper bound. Solving the associated

MIP gives us the solution Y 1 = {2,0} with an objective value of 6 + 2 = 8. We can either use this value as

upper bound or keep the previous value of ub∗.

2. The lower bound of the solution associated with node 2 is already higher than our current best upper

bound, we can thus discard the solution.

Mahéo et al.: Unified Branch-and-Benders-Cut
Article submitted to INFORMS Journal on Computing; manuscript no. (Please, provide the manuscript number!) 35

Appendix B: Supplement to the experimental design

B.1. SSLP subproblem heuristic

Algorithm 2: Allocation heuristic for the SSLP.
Data: The set of nodes N

Data: The set of opened servers J

Sj = 0, ∀j ∈ J foreach i∈N do
Di = {dij | ∀j ∈ J }

Sort each Di in ascending order

δi =D0
i −D1

i

N ′ = sort N by decreasing opportunity δ

foreach i∈N ′ do
k= arg mink∈J Sk +Dk

i ≤D

Sk = Sk +Dk
i

Result: An allocation of nodes i to servers j

B.2. SSLP instances

Instances in the SIPLib (Ntaimo and Sen 2005) are generated according to the following rules.

• Problem data are generated from uniform distributions:

— server location cost in [40,80];

— client demands in [0,25];

— client-server revenue equal to the demand;

— overflow cost qj0 = 1000,∀j ∈ J ;

— one server location per node.

• The scenario data are generated from a Bernoulli distribution:

— a client is present in a scenario with probability p= 0.5;

— we check that there are no duplicate scenarios.

• The difficulty of an instance is controlled by a ratio (r) of the total server capacity to the maximum

possible demand – the lower the r, the harder the instance as servers cannot fulfill the demand.

Class m n S

1 5 25 {50, 100}
2 10 50 {50, 100, 500, 1000, 2000}
3 15 45 {5, 10, 15}
Table 8 Instance class characteristics

Mahéo et al.: Unified Branch-and-Benders-Cut
36 Article submitted to INFORMS Journal on Computing; manuscript no. (Please, provide the manuscript number!)

Appendix C: SSLP variants

Algorithm 3: Allocation heuristic for the SSLS.
Data: The vector of active clients N ∈Nn

Data: The vector of opened servers J ∈Nm

Sj = 0, ∀j ∈ J foreach ni ∈N do
Di = {dij | ∀mj ∈ J }

Sort each Di in ascending order

δi =D0
i −D1

i

N ′ = sort N by decreasing opportunity δ

foreach ni ∈N ′ do
for n= 0; n< ni; n+=1 do

k= arg minj∈J Sk +Dk
i ≤D ∗ j

Sk = Sk +Dk
i

Result: An allocation of nodes i to servers j

Two variants of the SSLP are also used to benchmark our solution approach. These problems are more

challenging than the original SSLP in the sense that they allow general integer variables in both stages. In

this section, we describe the deterministic equivalent formulation associated with these SSLP variants.

C.1. Stochastic server location problem with pure integer second stage

The first SSLP variant is introduced by Gade et al. (2014) and involves pure discrete variables in both the

first and the second stage. Specifically, the SSLP with pure integer second stage is obtained by changing the

declaration of the yj0 variables in (SSLP) to: yj0 ∈N

C.2. Stochastic server location problem and sizing problem

The second SSLP variant is introduced by Qi and Sen (2017) and involves pure general integer variables

in both the first stage and the second stage. In the Stochastic server location problem and sizing problem

(SSLS), the number of servers that can be installed at a potential server location is limited to u units, and

each client location may consist of up to v clients. Similarly to the first version, the declaration of the yj0

variables is changed from continuous to integer. Also, the declaration of the xj and yωij variables is changed

from binary to integer, and bounded by u and v, respectively. Note that, in this second SSLP variant, the

stochastic parameters hω
i are integer and indicate the number of clients at location i in scenario ω.

xj ∈ {0,1, . . . , u}, yωij ∈ {0,1, . . . , v}, yj0 ∈N.

Qi and Sen (2017) introduce SSLS instances that vary according to the following parameters: the number

of potential server locations (m), the maximum number of servers allowed for each location (u), the number

of client locations (n), the maximum number of potential clients for each locations (v), and the number of

scenarios (S). Consequently, these instances are described by the name “SSLS-(m u)-(n v)-S.” The authors

describe 9 instance classes that are summarized in Table 9.

Mahéo et al.: Unified Branch-and-Benders-Cut
Article submitted to INFORMS Journal on Computing; manuscript no. (Please, provide the manuscript number!) 37

Class m u n v S

1 2 5 5 5 {50, 100, 500}
2 2 5 10 5 {50, 100, 500}
3 2 5 15 5 {50, 100, 500}
4 3 5 5 5 {50, 100, 500}
5 3 5 10 5 {50, 100, 500}
6 3 5 15 5 {50, 100, 500}
7 4 5 5 5 {50, 100, 500}
8 4 5 10 5 {50, 100, 500}
9 4 5 15 5 {50, 100, 500}

Table 9 Instance class characteristics

C.3. Allocation heuristic for the SSLS

The SSLS can be seen as a generalization of the SSLP. We need to adapt our allocation heuristic to take into

account multiple clients and multiple servers per location. The resulting heuristic is shown in Algorithm 3.

Mahéo et al.: Unified Branch-and-Benders-Cut
38 Article submitted to INFORMS Journal on Computing; manuscript no. (Please, provide the manuscript number!)

Appendix D: Analyzing the performance of UB&BC for 2TSP

D.1. Impact of the partial Benders decomposition

We now study the impact of using a partial Benders decomposition. Using the 2TSP as example, we add an

artificial scenario ω′ to the master problem (Section 4.1.3). In Figure 5 we present the results of using the

enhanced master formulation.

50 200 350 500

Scenarios

0

4200

8400

12600

16800

21000

T
im

e
(s
)

Base

Enhanced

Instance: fri26

50 200 350 500

Base

Enhanced

Instance: bayg29

Figure 5 Solving time of the Base formulation (Auto heuristic and regular MP) and the Enhanced formulation

(warmed LKH and extended MP).

At virtually no cost, extending the master formulation with subproblem variables provides the best

improvement. We can see that both scatter plots follow a linear progression in the number of scenarios, but

the extended formulation has a much better scaling. This has been the most efficient optimization we have

found to improve the performance of our framework from a modelling point of view.

This is further exemplified in Table 10 where we report the number of solutions explored during the

master’s B&C. Overall, the number of integer solutions explored by the Enhanced formulation is more than

7 times smaller than the number of integer solutions explored by the Base formulation. This number goes

down to about 1%, effectively eliminating most of the search. By having fewer master solutions explored, we

have less work remaining in the post-processing phase.

D.2. Impact of the subproblem heuristic

We now analyze the performance of the heuristics used in the 2TSP.

Mahéo et al.: Unified Branch-and-Benders-Cut
Article submitted to INFORMS Journal on Computing; manuscript no. (Please, provide the manuscript number!) 39

Instance Base UB&BC Enhanced UB&BC Ratio (%)

burma14 57.60 9.70 16.84
ulysses16 156.70 17.80 11.36
gr17 113.70 4.80 4.22
gr21 12.70 3.00 23.62
gr24 7.00 3.00 42.86
fri26 33.50 3.00 8.96
bays29 425.50 4.00 0.94
bayg29 355.40 3.30 0.93

Table 10 Average number of master solutions explored during the B&C. We only report instances where the

Base configuration managed to finish.

D.2.1. LKH heuristic implementation details. The Lin-Kernighan and Helsgaun heuristic tries to

build a tour by identifying promising moves. It starts with a random tour, identifies one edge to remove and

one to add which improve the tour length. Instead of stopping at this point, like in 2-opt, it tries to find other

edges with the same property. It then restarts from the new, improved tour. The strength of this heuristic

comes from combining simple local search operators with intelligent rules. For example, when searching for

a pair of edges, the resulting configuration must form a tour.

We did not implement all improvements proposed by Helsgaun. Our current implementation uses:

• Solution removal : stop the search if we find a previous solution.

• Allow disjoint tours: early in the search, allow the improving configuration to be a disjoint tour.

• Order neighbors: order the neighbors from closest to furthest for each node.

D.2.2. Merging solutions. We represent the master solution and the scenario realization as binary

strings: a ‘1’ indicates that the node is selected, a ‘0’ that it is not. As the master problem uses every node

available and a scenario is a realization on this set of nodes, we can extract a merged configuration from the

master solution and the scenario realization by performing a binary and between the two.

Such a configuration can occur given different master solution and/or scenario realization:

Master Scenario Configuration
[0,1,1,0] & [1,0,1,0] = [0,0,1,0]
[0,1,1,1] & [1,0,1,0] = [0,0,1,0]
[0,1,1,0] & [1,0,1,1] = [0,0,1,0]

Table 11 Merging procedure: different master/scenario combinations can lead to the same configuration.

By keeping track of explored configurations, we can reduce the computational effort by simply recalling

previous results. Figure 6 is a graphic representation of the merging procedure applied to the 2TSP in the

contiguous U.S. instance, att48.

D.2.3. Warm-up procedure. One weakness of our UB&BC algorithm is the loss of information with

regards to integer solutions of the subproblem. As a way to retain some of this information we can exploit

exact solutions to the TSP. Because our goal is to avoid solving large MIPs repeatedly, we use the following

warm-up procedure:

Mahéo et al.: Unified Branch-and-Benders-Cut
40 Article submitted to INFORMS Journal on Computing; manuscript no. (Please, provide the manuscript number!)

Master Sub-Problem Combination

Figure 6 The first column contains the master configurations, the second the subproblem realizations, and the

last is the resulting TSP.

• Before starting the master B&B, solve every scenario as a MIP to optimality, we thus obtain optimal

tours for each realization.

• Use these tours as starting solutions for the heuristics. Indeed, our heuristics are local search heuristics

which means that they try to improve a starting solution. The quality of the initial tour may thus have a

large influence on the final solution.

• Finally, we can also use the optimal tours as starting basis for the MIPs in the post-processing phase.

Providing a MIP solver with an initial solution is a well-known strategy for speeding-up the process as it

allows the solver to derive strong bounds early on.

D.2.4. Problem-specific heuristics. Figure 7 presents the results of using the four local search heuris-

tics on fri26 and bayg29 using 25 to 500 scenarios. The results show a clear difference based on the quality of

the heuristic: the Greedy heuristic performs the worst, reaching the time limit before reaching 200 scenarios.

The difference in performance between 2- and 3-opt shows clearly with a larger number of scenarios.

This is because the master B&B for 3-opt takes longer than for 2-opt, but this translates into a shorter

post-processing phase. On a larger number of scenarios 3-opt is therefore a better choice.

Figure 8 shows a detailed execution on fri26 with 100 scenarios. We report the evolution of the LP

relaxation objective function value and the heuristic value per iteration – each integer solution explored in

the master B&B. The black line shows the best upper bound.

The main result is that the better the heuristic, the fewer iterations because the gap is closed much earlier.

This example displays why better heuristics achieve better performances in the post-processing phase. Indeed,

Mahéo et al.: Unified Branch-and-Benders-Cut
Article submitted to INFORMS Journal on Computing; manuscript no. (Please, provide the manuscript number!) 41

50 200 350 500

Scenarios

0

4200

8400

12600

16800

21000
T
im

e
(s
)

Greedy

LKH

3-Opt
2-Opt

Instance: fri26

50 200 350 500

Greedy

LKH

3-Opt 2-Opt

Instance: bayg29

Figure 7 Comparison of different heuristics as upper-bounding procedures.

1 15 29 42 56 70

O
b
je
ct
iv
e

Greedy

1 5 10 14 19 23

2-opt

LP Relaxation

Heuristic

UB

1 5 9 14 18 22

Master solutions

O
b
je
ct
iv
e

3-opt

1 2 33 4 5

Master solutions

LKH

Figure 8 Upper, lower, and best upper bound values per iteration on fri26 with 100 scenarios.

by exploring fewer solutions the algorithm has to solve fewer MIPs after the B&B finishes. We have two

extreme cases between Greedy and LKH: the latter explores ten times fewer solutions by virtue of providing

a solution very close to the optimal.

Mahéo et al.: Unified Branch-and-Benders-Cut
42 Article submitted to INFORMS Journal on Computing; manuscript no. (Please, provide the manuscript number!)

Overall, LKH dominates the results. It does more work at each integer solution of the master problem but

reduces the number of solution explored to such an extent that it results in a much faster post-processing

and overall solving time.

D.2.5. Zero-knowledge heuristics. Using problem-specific heuristics still requires the user to develop,

or at least implement, an efficient algorithm. We claim that our framework only requires knowledge of the

model. We now present results using an approach that does not require the use of a tailored algorithm: using

the first feasible solution given by the MIP formulation of the subproblem. This heuristic was implemented

using the same solver as the framework: CPLEX v12.7. Figure 9 provides the results compared to the best

(LKH) and worst (Greedy) performing heuristics.

50 200 350 500

Scenarios

0

4200

8400

12600

16800

21000

T
im

e
(s
)

Greedy

LKH

CPLEX

Instance: fri26

50 200 350 500

Greedy

LKH

CPLEX

Instance: bayg29

Figure 9 Comparison of the automatic heuristic vs. best performing heuristic, LKH, and worst performing,

Greedy.

What is interesting is that although the automatic heuristic performs way worse than the best TSP

heuristic, it is still better than Greedy. This shows that one needs to be careful when designing a heuristic,

but if need be using a commercial solver can be useful. Using an exact heuristic has no benefit as the extra

computational load far outweighs the chance of an early stop – which did not occur during our testing.

In conclusion, using a strong heuristic is critical in order to increase the convergence of the algorithm.

A good heuristic reduces the number of solutions the B&B tree has to explore by providing a tight bound

on the integer value. Also, we have demonstrated that solving the subproblem to optimality at each master

solution is actually a computational burden that can be lightened by using a post-processing phase.

	Introduction
	Literature review
	Unified Branch-and-Benders-Cut
	Description of the algorithm
	Partial Benders reformulation
	Benchmark problems
	Stochastic server location problem
	Stochastic mixed-integer program.
	Benders decomposition.
	Partial Benders reformulation.
	Subproblem heuristic.
	Instances.

	Traveling salesman with outsourcing
	Stochastic mixed-integer program.
	Benders decomposition.
	Partial Benders reformulation.
	Subproblem heuristics.
	Instances.
	Computational study
	Comparison with state-of-the-art approaches for two-stage stochastic integer programs
	Comparison with D2, PH-DD, and PH-B&B (Lg SSLP variant).
	Comparison with Gomory (Lg SSLP variant).
	Comparison with ABC (Lg SSLP variant).

	Performance of UB&BC on the 2TSP

	Conclusions
	Toy problem
	Master Branch-and-Cut
	Post-processing

	Supplement to the experimental design
	SSLP subproblem heuristic
	SSLP instances

	SSLP variants
	Stochastic server location problem with pure integer second stage
	Stochastic server location problem and sizing problem
	Allocation heuristic for the SSLS
	Analyzing the performance of UB&BC for 2TSP
	Impact of the partial Benders decomposition
	Impact of the subproblem heuristic
	LKH heuristic implementation details.
	Merging solutions.
	Warm-up procedure.
	Problem-specific heuristics.
	Zero-knowledge heuristics.

